Q 1 :    

Mass of glucose (C6H12O6) required to be dissolved to prepare one litre of its solution which is isotonic with 15 g L-1 solution of urea (NH2CONH2) is

(Given: Molar mass in g mol-1 C : 12, H : 1, O : 16, N : 14)                      [2024]

  • 55 g

     

  • 15 g

     

  • 30 g

     

  • 45 g

     

(4)

As the two solutions of glucose and urea are isotonic, it means they have the same osmotic pressure at a given temperature.

π1(Glucose)=π2(Urea)

C1RT=C2RT  (π=CRT)

n1V1RT=n2V2RT n1V1=n2V2 w1M1V1=w2M2V2

w1=15×18060=45 g

(Molar mass; glucose = 180 g mol-1, urea = 60 g mol-1)



Q 2 :    

The plot of osmotic pressure (π) vs concentration (mol L-1) for a solution gives a straight line with slope 25.73 L bar mol-1. The temperature at which the osmotic pressure measurement is done is (Use R = 0.083 L bar mol-1 K-1)                   [2024]

  • 37 °C

     

  • 310 °C

     

  • 25.73 °C

     

  • 12.05 °C

     

(1)

As we know, π=CRT

The plot of π (osmotic pressure) vs concentration will give

(On comparing with straight line equation y=mx+C)

Slope = (m)=RT

25.73=RT

T=25.73R=25.730.083=310 K 

T=310 K or 37°C



Q 3 :    

The following solutions were prepared by dissolving 10 g of glucose (C6H12O6) in 250 mL of water (P1), 10 g of urea (CH4N2O) in 250 mL of water (P2) and 10 g of sucrose (C12H22O11) in 250 mL of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is        [2021]

  • P3>P1>P2

     

  • P2>P1>P3

     

  • P1>P2>P3

     

  • P2>P3>P1

     

(2)

Osmotic pressure (π)=CRT

   πC

For glucose solution, C1=10180×1000250=0.22 M

For urea solution, C2=1060×1000250=0.66 M

For sucrose solution, C3=10342×1000250=0.117 M

Hence, order of osmotic pressure is P2>P1>P3



Q 4 :    

The freezing point depression constant (Kf) of benzene is 5.12 K kg mol-1. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off up to two decimal places)             [2020]

  • 0.20 K

     

  • 0.80 K

     

  • 0.40 K

     

  • 0.60 K

     

(3)

Given: Kf=5.12 K kg mol-1,  m=0.078 m

ΔTf=Kf×m=5.12×0.078=0.399360.40 K



Q 5 :    

If molality of the dilute solution is doubled, the value of molal depression constant (Kf) will be             [2017]

  • halved

     

  • tripled

     

  • unchanged

     

  • doubled

     

(3)

The value of molal depression constant, Kf is constant for a particular solvent, thus, it will be unchanged when molality of the dilute solution is doubled.



Q 6 :    

At 100°C the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm. If Kb = 0.52, the boiling point of this solution will be              [2016]

  • 102 °C

     

  • 103 °C

     

  • 101 °C

     

  • 100 °C

     

(3)

Given: WB=6.5 g, WA=100 g

ps=732 mm, Kb=0.52, Tb0=100°C, p0=760 mm

po-pspo=n2n1    760-732760=n2100/18

n2=28×100760×18=0.2046 mol

ΔTb=Kb×m

Tb-Tbo=Kb×n2×1000WA(g)

Tb-100°C=0.52×0.2046×1000100=1.06

Tb=100+1.06=101.06°C