Q 11 :    

The angle of projection of a particle is measured from the vertical axis as ϕ and the maximum height reached by the particle is hm. Here hm as function of ϕ can be represented as          [2025]

  •  

  •  

  •  

  •  

(3)

hm=u2sin2θ2g, θ=90°ϕ

 hm=u2cos2ϕ2g

From ϕ=0 to ϕ=90

hm decreases with cos2 function.



Q 12 :    

A particle is projected with velocity u so that its horizontal range is three times the maximum height attained by it. The horizontal range of the projectile is given as nu225g, where value of n is : (Given 'g' is the acceleration due to gravity).           [2025]

  • 6

     

  • 18

     

  • 12

     

  • 24

     

(4)

Range R3Hmax

u2sin2θg=3u2sin2θ2g

2sinθcosθ=32sin2θ

tanθ=43  θ=53°

R=u2(2×35×45)g=24u225g



Q 13 :    

Two projectiles are fired from ground with same initial speeds from same point at angles (45° + α) and (45° – α) with horizontal direction. The ratio of their times of flights is          [2025]

  • 1

     

  • 1tanα1+tanα

     

  • 1+sin2α1sin2α

     

  • 1+tanα1tanα

     

(4)

Time of flight for 1st projectile,

T1=2u sin(45+α)g

Time of flight for 2nd projectile,

T2=2u sin(45α)g

T1T2=sin(45+α)sin(45α)

T1T2=12cosα+12sinα12cosα12sinα

T1T2=cosα+sinαcosαsinα=1+tanα1tanα



Q 14 :    

A helicopter flying horizontally with a speed of 360 km/h at an altitude of 2 km, drops an object at an instant. The object hits the ground at a point 'O', 20 s after it is dropped. Displacement of 'O' from the position of helicopter where the object was released is:

(Use acceleration due to gravity g = 10 m/s2 and neglect air resistance)          [2025]

  • 25 km

     

  • 4 km

     

  • 7.2 km

     

  • 22 km

     

(4)

u=360×518=100 m/s

x=u×t=100×20=2×103m=2 km

t=2Hg  H=t2g2

H=400×102=2000 m = 2 km

Displacement, D=x2+H2=22 km.



Q 15 :    

Two balls with same mass and initial velocity, are projected at different angles in such a way that maximum height reached by first ball is 8 times higher than that of the second ball. T1 and T2 are the total flying times of first and second ball, respectively, then the ratio of T1 and T2 is :          [2025]

  • 22:1

     

  • 2 : 1

     

  • 2:1

     

  • 4:1

     

(1)

Given, (H)1=8×(H)2

H1=u2sin2θ12g and H2=u2sin2θ22g

u2sin2θ12g=8×u2sin2θ22g

sinθ1=22sinθ2  sinθ1sinθ2=22

T1=2usinθ1g and T2=2usinθ2g

 T1T2=sinθ1sinθ2=22



Q 16 :    

A particle is projected at an angle of 30° from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is h0 and height traversed in the last second, before it reaches the maximum height, is h1. The ratio h0h1 is ___________ [Take, g = 10 m/s2]               [2025]



(5)

Time to reach maximum height,

tHmax=usinθg=6010×12=3 s

Height in 1st second S1=30×112×10×1=25 m

Height in last second S3=30+(102)×(2×31)=5 m 

 S1S3=255=5