Q 1 :

A man carrying a monkey on his shoulder does cycling smoothly on a circular track of radius 9 m and completes 120 revolutions in 3 minutes. The magnitude of centripetal acceleration of monkey is (in m/s2)                 [2024]

  • 4π2 ms-2

     

  • 57600π2 ms-2

     

  • 16π2 ms-2

     

  • Zero

     

(3) 

        Given : R = 9m and 120 revolutions in 3 min

        Angular velocity, ω=120 Rev.3 min.=120×2π rad3×60 sec=4π3rad/s

        acentripetal=ω2R=(4π3)2×9=16π2 m/s2

 



Q 2 :

A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes, duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take π = 3.14)                   [2024]

  • 118.9

     

  • 220.0

     

  • 139.4

     

  • 140.5

     

(3) 

       xmin=π×rmin=π×60100m.

      xsecond=30×2π×rsecond=30×2π×75100

       x=xsecond-xmin=139.4m

 



Q 3 :

A particle is moving in a circle of radius 50 cm in such a way that at any instant the normal and tangential components of its acceleration are equal. If its speed at t = 0 is 4 m/s, the time taken to complete the first revolution will be 1α[1-e-2π]s, where α= _____________ .            [2024]



(8)     |ac|=|at|   

          v2r=dvdt4vdvv2=0tdtr

          [-1v]4v=tr-1v+14=2t

          v=41-8t=dsdt

           40tdt1-8t=0sds

          (r=0.5m s=2πr=π)

          4×[ln(1-8t)]0t-8=π

           lln(1-8t)=-2π

           1-8t=e-2πt=18(1-e-2π)

            So, α=8

 



Q 4 :

A particle is moving with constant speed in a circular path. When the particle turns by an angle 90°, the ratio of instantaneous velocity to its average velocity is π:x2. The value of x will be                  [2023]

  • 1

     

  • 2

     

  • 7

     

  • 5

     

(2)

AB=R2

Let instantaneous velocity be v, time,

t=Arc lengthv=2πR4v=πR2v

Average velocity, <v>=ABt=R2(2v)πR=22vπ

  vv=π22



Q 5 :

As shown in the figure, a particle is moving with constant speed π m/s. Considering its motion from A to B, the magnitude of the average velocity is       [2023]

  • π m/s

     

  • 3 m/s

     

  • 23 m/s

     

  • 1.53 m/s

     

(4)

|<v>|=|rf-ri|Δt

=2Rcos[π-θ2]2πR3v=3cos30°=1.53 m/s

Correct option is (4)



Q 6 :

For particle P revolving round the centre O with radius of circular path r and angular velocity ω, as shown in below figure, the projection of OP on the x-axis at time t is        [2023]

  • x(t)=rcos(ωt+π6)

     

  • x(t)=rsin(ωt+π6)

     

  • x(t)=rcos(ωt)

     

  • x(t)=rcos(ωt-π6ω)

     

(1)

x(t)=rcos(ωt+30°)

x(t)=rcos(ωt+π6)