Q 1 :    

The two dimensional motion of a particle, described by r=(i^+2j^)Acosωt is a/an                   

A. parabolic path
B. elliptical path
C. periodic path
D. simple harmonic motion

Choose the correct answer from the options given below:                                      [2024]

  • B, C and D only

     

  • A, B and C only

     

  • A, C and D only

     

  • C and D only

     

(4)

r=Acosωti^+2Acosωtj^

x=Acosωt                      ...(i)

y=2Acosωt                    ...(ii)

Dividing (i) by (ii), we get

xy=12    [Equation of straight line]



Q 2 :    

The position of a particle is given by r(t)=4ti^+2t2j^+5k^

where t is in seconds and r in metre. Find the magnitude and direction of velocity v(t), at t=1s, with respect to the x-axis.     [2023]
 

  • 42ms-1, 45°

     

  • 42ms-1, 60°

     

  • 32ms-1, 30°

     

  • 32ms-1, 45°

     

(1)

v=drdt=4i^+4tj^+0k^

At t=1sec; v=4i^+4(1)j^

Magnitude, |v|=(4)2+(4)2=42m/s

Direction, tanθ=vyvx=1 or θ=45°



Q 3 :    

The x and y coordinates of the particle at any time are x=5t-2t2 and y=10t respectively, where x and y are in metres and t in seconds. The acceleration of the particle at t=2s is            [2017]

  • 5ms-2

     

  • -4ms-2

     

  • -8ms-2

     

  • 0

     

(2)

x=5t-2t2, y=10t

dxdt=5-4t,  dydt=10   vx=5-4t, vy=10

dvxdt=-4,  dvydt=0   ax=-4, ay=0

Acceleration, a=axi^+ayj^=-4i^

 The acceleration of the particle at t=2s is -4ms-2.



Q 4 :    

The position vector of a particle R as a function of time is given by R=4sin(2πt)i^+4cos(2πt)j^ where R is in meters, t is in seconds and i^ and j^ denote unit vectors along x and y-directions, respectively. Which one of the following statements is wrong for the motion of the particle?                 [2015]
 

  • Magnitude of the velocity of particle is 8 meter/second.

     

  • Path of the particle is a circle of radius 4 meter.

     

  • Acceleration vector is along -R.

     

  • Magnitude of acceleration vector is v2R, where v is the velocity of particle.

     

(1)

Here, R=4sin(2πt)i^+4cos(2πt)j^

The velocity of the particle is

v=dRdt=ddt[4sin(2πt)i^+4cos(2πt)j^]=8πcos(2πt)i^-8πsin(2πt)j^

Its magnitude is |v|=(8πcos(2πt))2+(-8πsin(2πt))2

           =64π2cos2(2πt)+64π2sin2(2πt)

            =64π2[cos2(2πt)+sin2(2πt)]

            =64π2  (As sin2θ+cos2θ=1)

            =8πm/s



Q 5 :    

A particle is moving such that its position coordinates (x, y) are (2 m, 3 m) at time t = 0, (6 m, 7 m) at time t = 2 s and (13 m, 14 m) at time t = 5 s. Average velocity vector (vav)from t = 0 to t = 5 s is               [2014]
 

  • 15(13i^+14j^)

     

  • 73(i^+j^)

     

  • 2(i^+j^)

     

  • 115(i^+j^)

     

(4)

At time t = 0, the position vector of the particle is r1=2i^+3j^.

At time t = 5 s, the position vector of the particle is r2=13i^+14j^.

Displacement from r1 to r2 is

Δr=r2-r1=(13i^+14j^)-(2i^+3j^)=11i^+11j^

  Average velocity,  vav=ΔrΔt=11i^+11j^5-0=115(i^+j^)