Q 1 :    

The maximum elongation of a steel wire of 1 m length if the elastic limit of steel and its Young's modulus, respectively, are 8×108N m-2 and 2×1011N m-2, is     [2024]
 

  • 4 mm

     

  • 0.4 mm

     

  • 40 mm

     

  • 8 mm

     

(1)

Here, l=1 m

Young’s modulus =2×1011N m-2 and Stress =8×108N m-2

Δl=StressY×l=8×1082×1011×1=4×10-3=4 mm



Q 2 :    

Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end. The longitudinal stress at any point of cross-sectional area A of the wire is               [2023]
 

  • W/2A

     

  • Zero

     

  • 2W/A 

     

  • W/A 

     

(4)

Longitudinal stress is the normal stress which changes the length of the body, it is given by =WA

 



Q 3 :    

Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The stretching of a spring is determined by the shear modulus of the material of the spring.
Reason (R): A coil spring of copper has more tensile strength than a steel spring of same dimensions.

In the light of the above statements, choose the most appropriate answer from the options given below:            [2022]

  • Both (A) and (R) are true and (R) is the correct explanation of (A)

     

  • Both (A) and (R) are true and (R) is not the correct explanation of (A)

     

  • (A) is true but (R) is false

     

  • (A) is false but (R) is true

     

(3)

The stretching of a coiled spring is determined by its shear modulus because neither its length nor its volume changes but only the shape of the spring is changed. Elasticity of steel is more than copper.

 



Q 4 :    

A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L1 when mass M is suspended from its free end. The expression for Young’s modulus is                  [2020]
 

  • MgL1AL

     

  • Mg(L1-L)AL

     

  • MgLAL1

     

  • MgLA(L1-L)

     

(4)

Given : initial length = L, area of cross section = A

New length after mass M is suspended on the wire = L

 Change in length, ΔL=L1-L.

Now Young's modulus, Y=StressStrain=FA×LΔL

        =mgALΔL  or  MgLA(L1-L)



Q 5 :    

Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?           [2018]
 

  • 9F

     

  • 6F

     

  • 4F

     

  • F

     

(1)

Young's modulus, Y=FlAΔl

Since initial volume of wires are same and their areas of cross-sections are A and 3A, so lengths are 3l and l respectively.

For wire 1,

          Δl=(FAY)3l                                    ...(i)

For wire 2, let F' force be applied, 

       F'3A=YΔll

Δl=(F'3AY)l                                    ...(ii)

From equations (i) and (ii), (FAY)3l=(F'3AY)lF'=9F



Q 6 :    

The bulk modulus of a spherical object is 'B'. If it is subjected to uniform pressure 'p', the fractional decrease in radius is           [2017]

  • B3p

     

  • 3pB

     

  • p3B

     

  • pB

     

(3)

Bulk modulus B is given as

  B=-pVΔV                                 ...(i)

The volume of a spherical object of radius r is given as

     V=43πr3,  ΔV=43π(3r2)Δr

   -VΔV=43πr343π3r2Δr or -VΔV=-r3Δr

Put this value in eqn. (i), we get B=-pr3Δr

Fractional decrease in radius is -Δrr=p3B



Q 7 :    

The Young’s modulus of steel is twice that of brass. Two wires of same length and of same area of cross section, one of steel and another of brass are suspended from the same roof. If we want the lower ends of the wires to be at the same level, then the weights added to the steel and brass wires must be in the ratio of           [2015]
 

  • 4 : 1

     

  • 1 : 1

     

  • 1 : 2

     

  • 2 : 1

     

(4)

Let L and A be the length and area of cross-section of each wire. In order to have the lower ends of the wires to be at the same level (i.e. same elongation is produced in both wires), let weights Ws and Wb are added to steel and brass wires respectively. Then, by definition of Young’s modulus, the elongation produced in the steel wire is

ΔLs=WsLYsA                                           (as Y=W/AΔL/L)

and that in the brass wire is ΔLb=WbLYbA

But ΔLs=ΔLb                                    (given)

   WsLYsA=WbLYbA  or  WsWb=YsYb

As   YsYb=2;               WsWb=21



Q 8 :    

The approximate depth of an ocean is 2700 m. The compressibility of water is 45.4×10-11Pa-1 and density of water is 103kg/m3. What fractional compression of water will be obtained at the bottom of the ocean?         [2015]

  • 1.2×10-2

     

  • 1.4×10-2

     

  • 0.8×10-2

     

  • 1.0×10-2

     

(1)

Depth of ocean, d=2700m

Density of water, ρ=103kg m-3

Compressibility of water, K=45.4×10-11Pa-1

         ΔVV=?

Excess pressure at the bottom, ΔP=ρgd

        =103×10×2700=27×106Pa

We know, B=ΔP(ΔV/V)

(ΔVV)=ΔPB=K·ΔP                     (K=1B)

          =45.4×10-11×27×106=1.2×10-2



Q 9 :    

Copper of fixed volume V is drawn into wire of length l. When this wire is subjected to a constant force F, the extension produced in the wire is Δl. Which of the following graphs is a straight line?                     [2014]

  • Δl versus 1/l

     

  • Δl versus l2

     

  • Δl versus 1/l2

     

  • Δl versus l

     

(2)

As V=Al                                         ...(i)

where A is the area of cross-section of the wire.

Young’s modulus,  Y=(F/A)(Δl/l)=FlAΔl

         Δl=FlYA=Fl2YV  (Using (i))

       Δll2

Hence, the graph between Δl and l2 is a straight line.