Q 21 :    

If the system of equations

x + 2y –3z = 2

2x+λy+5z=5

14x+3y+μz=33

has infinitely many solutions, then λ+μ is equal to :          [2025]

  • 13

     

  • 11

     

  • 12

     

  • 10

     

(3)

Given : x + 2y – 3z = 2

2x+λy+5z=5

14x+3y+μz=33

For infinitely many solutions, we have =0

 |1232λ5143μ|=0

 1(λμ15)2(2μ70)3(614λ)=0

 λμ+42λ4μ+107=0

We also have, 1=2λμ+99λ10μ+225

2=μ13, 3=5λ+5

Now, 2=0 and 3=0

  13μ=0 and 5λ+5=0  μ=13  λ=1

Thus, we get λ+μ=13+(1)=131=12



Q 22 :    

Let α,β(αβ) be the values of m, for which the equations x + y + z = 1; x + 2y +4z = m and x + 4y + 10zm2 have infinitely many solutions. Then the value of n=110(nα+nβ) is equal to :          [2025]

  • 3080

     

  • 560

     

  • 3410

     

  • 440

     

(4)

We have, x + y + z = 1

x + 2y +4z = m and x + 4y + 10zm2

  =|1111241410|=1(4)1(6)+1(2)=0

For infinite many solutions, x=y=z=0

Now, x=0  |111m24m2410|=0

 1(4)1(10m4m2)+1(4m2m2)=0

 410m+4m2+4m2m2=0

 2m26m+4=0

 m23m+2=0  m=1,2

  α=1, β=2

Now, n=110(nα+nβ)=n=110n+n=110n2

=10(11)2+10(11)(21)6 = 55 + 385 = 440.