Q 21 :    

If the system of equations

x + 2y –3z = 2

2x+λy+5z=5

14x+3y+μz=33

has infinitely many solutions, then λ+μ is equal to :          [2025]

  • 13

     

  • 11

     

  • 12

     

  • 10

     

(3)

Given : x + 2y – 3z = 2

2x+λy+5z=5

14x+3y+μz=33

For infinitely many solutions, we have =0

 |1232λ5143μ|=0

 1(λμ15)2(2μ70)3(614λ)=0

 λμ+42λ4μ+107=0

We also have, 1=2λμ+99λ10μ+225

2=μ13, 3=5λ+5

Now, 2=0 and 3=0

  13μ=0 and 5λ+5=0  μ=13  λ=1

Thus, we get λ+μ=13+(1)=131=12



Q 22 :    

Let α,β(αβ) be the values of m, for which the equations x + y + z = 1; x + 2y +4z = m and x + 4y + 10zm2 have infinitely many solutions. Then the value of n=110(nα+nβ) is equal to :          [2025]

  • 3080

     

  • 560

     

  • 3410

     

  • 440

     

(4)

We have, x + y + z = 1

x + 2y +4z = m and x + 4y + 10zm2

  =|1111241410|=1(4)1(6)+1(2)=0

For infinite many solutions, x=y=z=0

Now, x=0  |111m24m2410|=0

 1(4)1(10m4m2)+1(4m2m2)=0

 410m+4m2+4m2m2=0

 2m26m+4=0

 m23m+2=0  m=1,2

  α=1, β=2

Now, n=110(nα+nβ)=n=110n+n=110n2

=10(11)2+10(11)(21)6 = 55 + 385 = 440.



Q 23 :    

If the system of equations

x+y+az=b

2x+5y+2z=6

x+2y+3z=3

has infinitely many solutions, then 2a+3b is equal to               [2023]

  • 20

     

  • 25

     

  • 28

     

  • 23

     

(4)

Given system of equations are

x+y+az=b

2x+5y+2z=6

x+2y+3z=3

For infinitely many solutions, Δ=0, Δ1=0, Δ2=0, Δ3=0

Δ=|11a252123|=01(15-4)-1(6-2)+a(4-5)=0

11-4-a=0a=7

Δ1=|b1a652323|=0

b(15-4)-1(18-6)+a(12-15)=0

11b-12+7(-3)=0b=3311=3

  2a+3b=2(7)+3(3)=23



Q 24 :    

For the system of equations x+y+z=6, x+2y+αz=10, x+3y+5z=β, which one of the following is not true?         [2023]

  • System has infinitely many solutions for α=3,β=14.

     

  • System has no solution for α=3,β=24.

     

  • System has a unique solution for α=3,β14.

     

  • System has a unique solution for α=-3,β=14.

     

(3)

Let Δ=|11112α135|=1(10-3α)-1(5-α)+1=6-2α

For a unique solution, Δ0α3

Now, if α=3, then

Δ1=|6111023β35|=6(10-9)-1(50-3β)+1(30-2β)=β-14

Δ2=|16111031β5|=1(50-3β)-6(5-3)+1(β-10) =28-2β=-2(β-14)

Δ3=|116121013β|=1(2β-30)-1(β-10)+6(3-2)=β-14

Clearly, at β=14, Δi=0 ∀ i=1,2,3

   At α=3, β=14, the system of equations has infinitely many solutions.



Q 25 :    

Let S be the set of all values of θ[-π,π] for which the system of linear equations

x+y+3z=0,

-x+(tanθ)y+7z=0,

x+y+(tanθ)z=0

has a non-trivial solution. Then 120πθSθ is equal to              [2023]

  • 30

     

  • 10

     

  • 40

     

  • 20

     

(4)

For non-trivial solution, we have  |113-1tanθ711tanθ|=0

1(tan2θ-7)-1(-tanθ-7)+3(-1-tanθ)=0

tan2θ-7+tanθ+7-3-3tanθ=0

tan2θ+tanθ-3tanθ-3=0

tanθ(tanθ+1)-3(tanθ+1)=0

tanθ=-1 or tanθ=3θ=-π4,3π4,π3,-2π3

So, 120πθSθ=120π[-π4+3π4+π3-2π3]=120π×π6=20



Q 26 :    

For the system of linear equations 2x-y+3z=5; 3x+2y-z=7; 4x+5y+αz=β, which of the following is NOT correct?       [2023]

  • The system has infinitely many solutions for α=-6 and β=9

     

  • The system has infinitely many solutions for α=-5 and β=9

     

  • The system has a unique solution for α-5 and β=8

     

  • The system is inconsistent for α=-5 and β=8

     

(1)

We have,

2x-y+3z=5

3x+2y-z=7

4x+5y+αz=β

By Cramer's rule,

Δ=|2-1332-145α|=7α+35

Δ1=|5-1372-1β5α|=17α-5β+130

Δ2=|25337-14βα|=11β-α-104

Δ3=|2-1532745β|=7(β-9)

For infinite many solutions, Δ=Δ1=Δ2=Δ3=0

α=-5 and β=9

So, option (a) is incorrect and option (b) is correct.

For unique solution, Δ0α-5 and β can be any value.

Option (c) is correct.

At α=-5 and β=8

Δ=0 and Δ1=50                ∴ Solution is inconsistent.

 So, option (4) is correct.



Q 27 :    

If the system of linear equations 7x+11y+αz=13, 5x+4y+7z=β, 175x+194y+57z=361

has infinitely many solutions, then α+β+2 is equal to:             [2023]

  • 4

     

  • 3

     

  • 6

     

  • 5

     

(1)

For infinitely many solutions, Δ=Δ1=Δ2=Δ3=0

Δ=|711α54717519457|

=7(228-1358)-11(285-1225)+α(970-700)

=-7910+10340+270α=0 -2430+270α=0 α=-9

Δ1=|1311-9β4736119457|=13(228-1358)-11(57β-2527)-9(194β-1444)

=-14690-627β+27797-1746β+12996 =26103-2373β=0

β=11           α+β+2=-9+11+2=4



Q 28 :    

For the system of linear equations 

2x+4y+2az=b,

x+2y+3z=4,

2x-5y+2z=8

which of the following is NOT correct?                   [2023]
 

  • It has infinitely many solutions if a=3,b=8

     

  • It has infinitely many solutions if a=3,b=6

     

  • It has unique solution if a=b=8

     

  • It has unique solution if a=b=6

     

(2)

We have, system of linear equations

2x+4y+2az=b

x+2y+3z=4

2x-5y+2z=8

It can be written as AX=B,

where, A=[242a1232-52],   B=[b48],  X=[xyz]

|A|=2(4+15)-4(2-6)+2a(-5-4)=54-18a

If |A|=0, then a=3 and the system has infinitely many solutions.

If |A|0, then a3 and the system has a unique solution.

A11=19,  A12=4,  A13=-9,   A21=-38,  A22=-8,  A23=18, A31=0,  A32=0,  A33=0

adjA=[A11A21A31A12A22A32A13A23A33]=[19-3804-80-9180]

For infinitely many solutions:

(adjA)B=O[19-3804-80-9180][b48]=[000]

19b-152=0    b=8



Q 29 :    

If the system of equations 2x+y-z=5, 2x-5y+λz=μ, x+2y-5z=7

has infinitely many solutions, then (λ+μ)2+(λ-μ)2 is equal to:                  [2023]

  • 912

     

  • 916

     

  • 904

     

  • 920

     

(2)

2x+y-z=5

2x-5y+λz=μ

x+2y-5z=7

The system of equations has infinitely many solutions when Δ=Δ1=Δ2=Δ3=0

Δ=0

|21-12-5λ12-5|=0

2(25-2λ)-1(-10-λ)-1(4+5)=0

50-4λ+10+λ-9=0 -3λ=-51λ=17

Δ3=0

|2152-5μ127|=02(-35-2μ)-1(14-μ)+5(4+5)=0

-70-4μ-14+μ+45=0-3μ=39μ=-13

   (λ+μ)2+(λ-μ)2=(17-13)2+(17+13)2=42+302=16+900=916



Q 30 :    

Let the system of linear equations

-x+2y-9z=7

-x+3y+7z=9

-2x+y+5z=8

-3x+y+13z=λ

has a unique solution x=α,y=β,z=γ. Then the distance of the point (α,β,γ) from the plane 2x-2y+z=λ is           [2023]

  • 9

     

  • 7

     

  • 13

     

  • 11

     

(2)

We have, -x+2y-9z=7  ... (i)

-x+3y+7z=9  ... (ii)

-2x+y+5z=8  ... (iii)

-3x+y+13z=λ  ... (iv)

From (i), we have x=2y-9z-7  ... (v)

Substituting the value of x in (ii) and (iii), we get

y+16z=2 and -3y+23z=-6

Solving these two equations, we get y=2,z=0.

x=2×2-9×0-7=4-7=-3  [Using (v)]

Now, substituting the value of x,y,z in equation (iv), we get

-3×(-3)+2+13×(0)=λλ=11

Distance of (-3,2,0) from the plane 2x-2y+z=11 is

d=|-6-4-114+4+1|=213=7 units.