Q 61 :    

The integral 800π4(sinθ+cosθ9+16sin2θ)dθ is equal to :          [2025]

  • 4loge3

     

  • 2loge3

     

  • 3loge4

     

  • 6loge4

     

(1)

Let I=800π4(sinθ+cosθ)dθ(9+16sin2θ)

=800π4(sinθ+cosθ)dθ9+16(11+2sinθcosθ)

=800π4(sinθ+cosθ)dθ2516(sinθcosθ)2

Put sinθcosθ=t  (cosθ+sinθ)dθ=dt

When θ=0, t=1 and θ=π/4, t=0.



Q 62 :    

Let f(x)=0xt(t29t+20)dt, 1x5. If the range of f is [α,β], then 4(α+β) equals :          [2025]

  • 253

     

  • 154

     

  • 157

     

  • 125

     

(3)

We have, f(x)=0xt(t29t+20)dt

f'(x)=x39x2+20x=x(x4)(x5)

Where 1x5

On integration, we get

f(x)=x449x33+20x22

             =x443x3+10x2, where 1x5

  f(1)=143+10=294=α

         f(4)=(4)443(4)3+10(4)2=32=β

         f(5)=(5)443(5)3+10(5)2=1254

  4(α+β)=4(294+32)=157



Q 63 :    

Let [·] denote the greatest integer function. If 0e3[1ex1]dx=αloge2, then α3 is equal to __________.          [2025]



(8)

Let f(x)=1ex1=e1x

f(0)=e1=2.71; f(e3)=e1e3(0,1)

Let f(x)=2  1ex1=2  x=1loge2

and f(x)=1  x=1

  I=01loge22dx+1loge211 dx+1e30 dx

=2(1loge20)+(11+loge2)+0=2loge2

        α=2

Hence, α3=8.



Q 64 :    

If limt0(01(3x+5)tdt)1t=α5e(85)23, then α is equal to _________.          [2025]



(64)

Let L=limt0(01(3x+5)tdx)1t

           =elimt01t(01(3x+5)tdx1)

           =elimt01t[((3x+5)t+13(t+1))011]          [ 1 form]

            =elimt0[8t+15t+13t33t(t+1)]

            =elimt0{[8·8t5·5t3t(85)3t]·limt0(1t+1)}

             =elimt013[8(8t1)t5(5t1)t3tt]

              =e(8 ln(8)5 ln(5)3)3=e[ln(8)8/3ln(5)5/3ln e]

=(8)8/3(5)5/3·e  (85)23·825·1e=α5e(85)23          [Given]

On comparing, we get

  α=82=64.



Q 65 :    

If 240π4(sin|4xπ12|+[2sinx])dx=2π+α, where [·] denotes the greatest integer function, then α is equal to _________.         [2025]



(12)

Let I=240π4(sin |4xπ12|+[2 sin x])dx

=24[0π/48[sin (4xπ12)]dx+π/48π/4sin (4xπ12)dx+0π/6[0]dx+π/6π/4[1]dx]

=24[(1cosπ12)(1cosπ12)+π4π64]

=24(12+π12)=12+2π

 I=12+2π=2π+α          [Given]

On comparing, we get α=12.