Q 1 :    

limn(12-1)(n-1)+(22-2)(n-2)++((n-1)2-(n-1))·1(13+23++n3)-(12+22++n2) is equal to:           [2024]

  • 34

     

  • 13

     

  • 12

     

  • 23

     

(B)

Let L=limn(12-1)(n-1)+(22-2)(n-2)+...+((n-1)2-(n-1))·1(13+23+...+n3)-(12+22+...+n2)

Numerator=r=1n-1[(r2-r)(n-r)]=r=1n-1(-r3+r2(n+1)-nr)

=-((n-1)n2)2+(n+1)(n-1)n(2n-1)6-n2(n-1)2

So, L=limnn(n-1)2[-n(n-1)2+(n+1)(2n-1)3-n](n(n+1)2)2-n(n+1)(2n+1)6

=limn(n-1)(-3n2+3n+2(2n2+n-1)-6n)(n+1)(3n2+3n-4n-2)

=limn(n-1)(n2-n-2)(n+1)(3n2-n-2)

=limnn3(1-1n)(1-1n-2n2)n3(1+1n)(3-1n-2n2)=13



Q 2 :    

limx0e-(1+2x)12xx is equal to                    [2024]

  • e

     

  • 0

     

  • -2e

     

  • e-e2

     

(A)

Let L=limx0e-(1+2x)1/2xx

=limx0e-e12xlog(1+2x)x

=limx0-e(elog(1+2x)2x-1-1)x

=limx0-e[elog(1+2x)-2x2x-1]x×log(1+2x)-2x2x×log(1+2x)-2x2x

=limx0-exlog(1+2x)-2x2x                  [∵ limx0ex-1x=1]

=limx0-e[11+2x·2-24x]      [Using L'Hospital Rule]

=limx0-e4-1(1+2x)2·4             [Again by L'Hospital]

=e

 



Q 3 :    

If a=limx01+1+x4-2x4 and b=limx0sin2x2-1+cosx,then the value of ab3 is:                 [2024]

  • 25

     

  • 36

     

  • 32

     

  • 30

     

(C)

a=limx01+1+x4-2x4

Rationalising numerator, we get

a=limx01+1+x4-2x4(1+1+x4+2)

=limx01+x4-1x4(1+1+x4+2)

Again rationalising numerator, we get

=limx01(1+x4+1)(1+1+x4+2)=12×22=142

Now, b=limx0sin2x2-1+cosx

=limx0(1-cos2x)(2+1+cosx)[2-(1+cosx)]         [By rationalising denominator]

=limx0(1+cosx)(1-cosx)(2+1+cosx)1-cosx

=limx0(1+cosx)(2+1+cosx)=42

     ab3=142×(42)3=32

 



Q 4 :    

limx0e2|sinx|-2|sinx|-1x2                    [2024]

  • does not exist

     

  • is equal to -1

     

  • is equal to 1

     

  • is equal to 2

     

(D)

We have, limx0=e2|sinx|-2|sinx|-1x2

R.H.L.limx0+=e2sinx-2sinx-1x2

limx0+=(1+2sinx+(2sinx)22!+)-2sinx-1x2

limx0+=4sin2xx2(12!+2sinx3!+)=2

L.H.L. =limx0-e-2sinx+2sinx-1x2

limx0-(1-2sinx+(2sinx)22!-(2sinx)33!+)+2sinx-1x2

limx0-4sin2xx2(12!-2sinx3!+)=2

L.H.L.=R.H.L.=2



Q 5 :    

If limx03+αsinx+βcosx+loge(1-x)3tan2x=13, then 2α-β is equal to               [2024]

  • 5

     

  • 1

     

  • 7

     

  • 2

     

(A)

Given, limx03+αsinx+βcosx+loge(1-x)3tan2x=13

limx03+α(x-x33!+x55!-)+β(1-x22!+x44!-)+(-x-x22!-2x33!-)3(tanxx)2·x2=13

limx03+α(x-x33!+x55!-)+β(1-x22!+x44!-)+(-x-x22!-2x33!-)3x2=13

Comparing the coefficient of x0, we get

         3+β=0β=-3

Comparing the coefficient of x', we get

        α-1=0α=1

     2α-β=2(1)-(-3)=2+3=5



Q 6 :    

If limx1(5x+1)1/3-(x+5)1/3(2x+3)1/2-(x+4)1/2=m5n(2n)2/3, where gcd(m,n)=1, then 8m+12n is equal to _______ .                   [2024]



(100)

Let L=limx1(5x+1)1/3-(x+5)1/3(2x+3)1/2-(x+4)1/2  (00 form)

Using L-Hospital's rule

L=limx113×5(5x+1)-2/3-13(x+5)-2/312×2(2x+3)-1/2-12(x+4)1/2

=(53-13)6-2/3(12)5-1/2=83×51/262/3=m5n(2n)2/3

m=8,n=3    8m+12n=100



Q 7 :    

Let a>0 be a root of the equation 2x2+x-2=0. If limx1a16(1-cos(2+x-2x2))(1-ax)2=α+β17, where α,βZ,then α+β is equal to ___.                [2024]



(170)

We have, 2x2+x-2=0

Given one root is a. Let another root be b.

Here, a=-1+174,  b=-1-174

 2+x-2x2=0 has roots 1a and 1b

Now, limx1a16(1-cos2(x-1a)(x-1b))a2(x-1a)2

limx1a16(1-cos2(x-1a)(x-1b))a2(x-1a)2×(x-1b)2(x-1b)2

=limx1a16·2sin2(x-1a)(x-1b)a2(x-1a)2×(x-1b)2(x-1b)2

=16×2a2(1a-1b)2

=32a2(174)=17×8a2=17×8×16(-1+17)2=153+1717

=α+β17

α=153, β=17

α+β=170



Q 8 :    

The value of limx02(1-cosxcos2xcos3x3cos10x10x2) is _______ .                 [2024]



(55)

limx02(1-cosxcos2xcos3x3cos10x10x2)

Let f=cosxcos2xcos3x3cos10x10

f=cosx(cos2x)1/2(cos3x)1/3(cos10x)1/10

Taking log on both sides, we get

logf=log cosx+12cos2x+13cos3x++110cos10x

Differentiating w.r.t. x

1fdfdx=-tanx-tan2x-tan10x

dfdx=-f(tanx+tan2x+tan10x)

Using L'Hospital's Rule

limx02(f(tanx+tan2x+tan10x))2x                 ( f=1)

=1+2++10=55



Q 9 :    

If α=limx0+(etanx-extanx-x) and β=limx0(1+sinx)12cotx are the roots of the quadratic equation ax2+bx-e=0, then 12loge(a+b) is equal to _______ .            [2024]



(6)

α=limx0+etanx-ex(tanx-x)

       =limx0+ex(etanx-x-1)(tanx-x)=1              [limx0ex-1x=1]

β=limx0(1+sinx)12cotx=limx0e(sinx)(12cotx)

      =limx0e12cosx=e1/2=e

Since, α,β be the roots of the quadratic equation, ax2+bx-e=0

     Products of roots =-ea=ea=-1

and sum of roots =-ba=1+eb=e+1

Hence, 12loge(a+b)=12loge(e+1-1)

                                           =12loge(e1/2)=6



Q 10 :    

Let {x} denote the fractional part of x and f(x)=cos-1(1-{x}2)sin-1(1-{x}){x}-{x}3,  x0.

 

If L and R respectively denotes the left hand limit and the right hand limit of f(x) at x=0, then 32π2(L2+R2) is equal to _____.           [2024]



(18)

 We have, f(x)=cos-1(1-{x}2)sin-1(1-{x}){x}-{x}3

R=limh0+f(x)=limh0f(0+h)

      =limh0+f(h)=limh0cos-1(1-h2)h(sin-111)

Put cos-1(1-h2)=θcosθ=1-h2

=π2limθ0θ1-cosθ=π2limθ011-cosθθ2=π211/2=π2

Also, L=limx0-f(x)=limh0f(-h)

=limh0cos-1(1-{-h}2)sin-1(1-{-h}){-h}-{-h}3

=limh0cos-1(1-(-h+1)2)sin-1(1-(-h+1))(-h+1)-(-h+1)3

=limh0cos-1(-h2+2h)sin-1h(1-h)(1-(1-h)2)

=limh0(π2)sin-1h(1-(1-h)2)=π2limh0(sin-1h-h2+2h)

=π2limh0(sin-1hh)(1-h+2)=π4

    32π2(L2+R2)=32π2(π22+π216)=16+2=18