Q 21 :    

limx(2x23x+5)(3x1)x2(3x2+5x+4)(3x+2)x is equal to :          [2025]

  • 2e3

     

  • 23e

     

  • 23e

     

  • 2e3

     

(2)

limx(23x+5x2)(113x)x/2(3+5x+4x2)(1+23x)x/2

=limx23·ex2(113x1)ex2(1+23x1)

=23·e16e13=23e.



Q 22 :    

limx0cosec x(2 cos2x+3 cos xcos2x+sin x+4) is :           [2025]

  • 125

     

  • 115

     

  • 0

     

  • 125

     

(1)

limx0cosec x(2 cos2x+3 cos xcos2x+sin x+4)

=limx01sin x[2 cos2x+3 cos xcos2xsin x42 cos2x+3 cos x+cos2x+sin x+4]

=limx01sin x[cos2x+3 cos xsin x42 cos2x+3 cos x+cos2x+sin x+4]

=limx0[(cosx+4)(cosx1)sin xsin x]×limx0[12cos2x+3cosx+cos2x+sinx+4]

=125limx0[(cosx+4)(2sin2x2)2 sinx2cosx2)2 sinx2cosx2]

=125limx0[(sinx2)(cos x+4)cosx2cosx2]

=125[1]=125.



Q 23 :    

Let f:R{0}R be a function such that f(x)6f(1x)=353x52. If the limx0(1αx+f(x))=β; α,βR, than α+2β is equal to          [2025]

  • 4

     

  • 3

     

  • 5

     

  • 6

     

(1)

We have, f(x)6f(1x)=353x52           ... (i)

Apply x1x, then

f(1x)6f(x)=35x352           ... (ii)

Using (i) and (ii), we get f(x)=2x13x+12

Now, β=limx0(1αx+f(x))

=limx0(1αx2x13x+12)

=[limx01x(1α13)]+12  α=3, β=12

Hence, α+2β=3+2×12=4



Q 24 :    

The value of limn(k=1nk3+6k2+11k+5(k+3)!) is :          [2025]

  • 5/3

     

  • 4/3

     

  • 7/3

     

  • 2

     

(1)

limn[k=1nk3+6k2+11k+5(k+3)!]

=limn[k=1nk3+6k2+11k+61(k+3)!]

=limn[k=1n(k+3)(k+2)(k+1)1(k+3)!]

=limn[k=1n(1k!1(k+3)!)]

=limn[11!14!+12!15!+13!-16!+14!17!+...+1n!1(n+3)!]

=1+12!+13!=53.

 



Q 25 :    

If limx0(tan xx)1x2=p, then 96logep is equal to __________.          [2025]



(32)

Given, p=limx0(tan xx)1x2

 p=elimx0(tan xxx3)

=elimx0(x+x33+2x55+...xx3)

            [ For 1 form limits, limxaf(x)g(x)=elimxa(f(x)1)g(x)]

=e1/3

  96logep=96×13=32



Q 26 :    

For t > –1, let αt and βt be the roots of the equation ((t+2)1/71)x2+((t+2)1/61)x+((t+2)1/211)=0. If limt1+αt=a and limt1+βt=b, then 72(a+b)2 is equal to __________.          [2025]



(98)

a+b=limt1+(αt+βt)

=limt1+[(t+2)161](t+2)171          [Sum of roots]

Let t + 2 = y, we get

a+b=limy1+y1/61y1/71=-76

So, 72(a+b)2=72(4936)=98.



Q 27 :    

Let f(x)=limnr=0n(tan(x/2r+1)+tan3(x/2r+1)1tan2(x/2r+1)). Then limx0exef(x)(xf(x)) is equal to __________.          [2025]



(1)

We have,

=limn r=0n[2 tan(x2r+1)tan(x2r+1)+tan3(x2r+1)1tan2(x2r+1)]

=limn r=0n[2 tan(x2r+1)1tan2(x2r+1)tan(x2r+1){1tan2(x2r+1)}{1tan2(x2r+1)}]

=limn r=0n(tanx2rtan(x2r+1))=tan x

Now, limx0(exetan xxtan x)

=limx0etan x(extan x1)(xtan x)=1          [ limy0ey1y=1]



Q 28 :    

Let [t] be the greatest integer less than or equal to t. Then the least value of pN for which limx0+(x([1x]+[2x]+...+[px])x2([1x2]+[22x2]+...+[92x2]))1 is equal to _________.          [2025]



(24)

We have,

limx0+(x([1x]+[2x]+...+[px])x2([1x2]+[22x2]+...+[92x2]))1

 (1+2+...+p)(12+22+...+92)1

 p(p+1)29.10.1961

 p(p+1)572 p24.



Q 29 :    

limx0((1-cos2(3x)cos3(4x))(sin3(4x)(loge(2x+1))5))  is equal to           [2023]
 

  • 24

     

  • 15

     

  • 9

     

  • 18

     

(4)

limx0[((1-cos23x)cos3(4x))(sin3(4x)(loge(2x+1))5)]

=limx0[sin2(3x)cos3(4x) × sin3(4x)[loge(2x+1)]5]

=limx0[sin2(3x)(3x)2×sin3(4x)(4x)3×(3x)2×(4x)3cos3(4x)·[loge(2x+1)2x]5×(2x)5]

=9×6432=18



Q 30 :    

If α>β>0 are the roots of the equation ax2+bx+1=0, and limx1α(1-cos(x2+bx+a)2(1-αx)2)12=1k(1β-1α), then k is equal to       [2023]

  • 2β

     

  • α

     

  • β

     

  • 2α

     

(4)

Given, ax2+bx+1=0 has roots α,β, then x2+bx+a=0 has roots 1α,1β.

Now, limx1α(1-cos(x2+bx+a)2(1-αx)2)1/2

=limx1α(2sin2(x2+bx+a2)2(1-αx)2)1/2

=limx1α(2sin2((x-1α)(x-1β)2)2(1-αx)2)1/2

limx1α(sin2((1-αx)(1-βx)2αβ)((1-αx)(1-βx)2αβ)2×((1-αx)(1-βx)2αβ)2(1-αx)2)12

=limx1α(1-βx2αβ)=(α-β2α2β)=12α(1β-1α)

=1k(1β-1α)  (Given)

 k=2α