Q 11 :    

If limx0ax2ex-bloge(1+x)+cxe-xx2sinx=1, then 16(a2+b2+c2) is equal to _____.       [2024]



(81)

Given, limx0ax2ex-bloge(1+x)+cxe-xx2sinx=1

limx0ax2(1+x1!+x22!+)-b(x-x22+x33)+cx(1-x1!+x22!)x2(x-x33!+x55!)=1

limx0(ax2+ax3+ax42!+)-bx+bx22-bx33+cx-cx2+cx32!=limx0x3-x53!+x75!

Comparing the coefficient of x3, we get

a-b3+c2=1                                                           ...(i)

Comparing the coefficient of x2, we get

a+b2-c=0                                                             ...(ii)

Comparing the coefficient of x, we get 

-b+c=0                                                                  ...(iii)

On solving (i), (ii) and (iii), we get

a=34,  b=c=32

16(a2+b2+c2)=16[916+94+94]=16[9+36+3616]=81



Q 12 :    

For α, β, γR, if limx0x2 sin αx+(γ1)ex2sin 2xβx=3, then β+γα is equal to:          [2025]

  • 7

     

  • 4

     

  • 6

     

  • –1

     

(1)

As, x0  sin 2xβx0

To make the given limit in 00 form; (γ1)e0+0 sin (α0)=0

 (γ1)=0  γ=1

So, limx0x2 sin (αx)(sin 2xβx)=3

 limx0x2[αx(αx)33!+(αx)55!.....][2x(2x)33!+(2x)55!.....]βx=3

 limx0αx3α3x53!+α5x75!.....x(2β)8x36+25·x55!.....=3

 2β=0 and α86=3

 β=2 and α=3(86)=4

  β+γα=2+1(4)=7.



Q 13 :    

If limx0cos(2x)+acos(4x)bx4 is finite, then (a + b) is equal to :          [2025]

  • 34

     

  • –1

     

  • 12

     

  • 0

     

(3)

limx0cos2x+acos4xbx4

=limx0(1(2x)22!+(2x)44!...)+a(1(4x)22!+(4x)44!...)bx4

=limx0(1+ab)+(28a)x2+(23+323a)x4+..... Higher power of x.x4

Since limit is finite so, we have

1 + ab = 0 and – 2 – 8a = 0

 a=14 and b=114=34

  a+b=14+34=24=12



Q 14 :    

If limx1+(x1)(6+λcos(x1))+μsin(1x)(x1)3=1, where λ, μR, then λ+μ is equal to          [2025]

  • 20

     

  • 19

     

  • 17

     

  • 18

     

(4)

We have,

limx1+(x1)(6+λcos(x1))+μsin(1x)(x1)3=1

Put x – 1 = t

limt0+t(6+λ cos t)μ sin tt3=1

 limt0+t[6+λ(1t22!+...)]μ[tt33!...]t3=1

Now, 6+λμ=0                                        ...(i)

λ2+μ6=1  3λμ=6                ...(ii)

From (i) and (ii), we get λ=6μ=12

  λ+μ=18.



Q 15 :    

Let f be a differentiable function on R such that f(2)=1, f'(2)=4. Let limx0(f(2+x))3/x=eα. Then the number of times the curve y=4x34x24(α7)xα meets x-axis is :          [2025]

  • 1

     

  • 0

     

  • 2

     

  • 3

     

(3)

Given, limx0(f(2+x))3/x=eα

 elimx03x(f(2+x)1)=eα          (1 form)

 elimx03f'(2+x)=eα

 e3f'(2)=eα  e12=eα

So, α=12

Now, y=4x34x24(α7)xα

=4x34x220x12

=4(x+1)2(x3)

   Roots are –1, –1 and 3

So, the curve y=4x34x220x12. The curve meets x-axis at 2 points.



Q 16 :    

limx0+tan (5(x)13)loge(1+3x2)(tan13x)2(e5(x)431) is equal to           [2025]

  • 1

     

  • 53

     

  • 13

     

  • 115

     

(3)

We have, limx0+tan (5(x)13)loge(1+3x2)(tan1(3x))2(e5(x)431)

 limx0+tan (5(x)13) loge(1+3x2)3x2×5(x)13(3x2)5(x)13(tan1(3x))2(3x)2(e5x431)5x43×9x×5x43

 limx0+tan (5(x)13)5(x)13loge(1+3x2)3x2×15x73(tan1(3x))2(3x)2(e5(x)431)5x43×45x73=13.



Q 17 :    

Given below are two statements :

Statement I : limx0(tan1x+loge1+x1x2xx5)=25

Statement II : limx1(x21-x)=1e2

In the light of the above statements, choose the correct answer from the potions given below.          [2025]

  • Statement I is true but Statement II is false

     

  • Both Statement I and Statement II are true

     

  • Both Statement I and Statement II are false

     

  • Statement I is false but Statement II is true

     

(2)

Let L=limx0(tan1x+loge1+x1x2xx5)

=limx0(xx33+x55...)+12[loge(1+x)loge(1x)]2xx5

=limx0(xx33+x55...)+12[xx22+x33.....(xx22x33.....)]2xx5

=limx0xx33+x55...+(x+x33+x55+...)2xx5

=limx0(2x+2x55+...)2xx5=25

   Statement I is true.

Let I=limx1x(21x)=limx1eln(x2/1x)=limx1e2 ln x/(1x)

Let us evaluate limx12 ln x1x          (00 form)

=limx12/x1          [Using L'Hospital rule]

= – 2

  I=limx1e2=e2

   Statement II is also true.



Q 18 :    

If limx((e1e)(1ex1+x))x=α, then the value of loge α1+loge α equals :          [2025]

  • e2

     

  • e1

     

  • e

     

  • e2

     

(3)

α=limx((e1e)(1ex1+x))x        (1 form)

  α=eL, where L=limxx((e1e)×(1ex1+x)1)

 L=limx(e1e)x(1ex1+x(1ee))

 L=e1elimxx(1x1+x)  L=e1elimxx1+x

 L=e1e·1  L=e1e

  α=ee1e  logeα=e1e

   Required value =e1e1+e1e=e.



Q 19 :    

limx(2x23x+5)(3x1)x2(3x2+5x+4)(3x+2)x is equal to :          [2025]

  • 2e3

     

  • 23e

     

  • 23e

     

  • 2e3

     

(2)

limx(23x+5x2)(113x)x/2(3+5x+4x2)(1+23x)x/2

=limx23·ex2(113x1)ex2(1+23x1)

=23·e16e13=23e.



Q 20 :    

limx0cosec x(2 cos2x+3 cos xcos2x+sin x+4) is :           [2025]

  • 125

     

  • 115

     

  • 0

     

  • 125

     

(1)

limx0cosec x(2 cos2x+3 cos xcos2x+sin x+4)

=limx01sin x[2 cos2x+3 cos xcos2xsin x42 cos2x+3 cos x+cos2x+sin x+4]

=limx01sin x[cos2x+3 cos xsin x42 cos2x+3 cos x+cos2x+sin x+4]

=limx0[(cosx+4)(cosx1)sin xsin x]×limx0[12cos2x+3cosx+cos2x+sinx+4]

=125limx0[(cosx+4)(2sin2x2)2 sinx2cosx2)2 sinx2cosx2]

=125limx0[(sinx2)(cos x+4)cosx2cosx2]

=125[1]=125.