Q 11 :    

Let z1, z2 and z3 be three complex number on the circle |z| = 1 with arg(z1)=π4, arg(z2)=0 and arg(z3)=π4. If |z1z2+z2z3+z3z1|2=α+β2, α,βZ, then the value of α2+β2 is :          [2025]

  • 24

     

  • 41

     

  • 29

     

  • 31

     

(3)

Given, |z| = 1

Now, z1=eiπ4=12i2=1i2; z2=ei0=1;

z3=eiπ4=1+i2

Now, |z1z¯2+z2z¯3+z3z¯1|2=|1i2·1+1·1i2+(1+i2)2|2

=|2+(12)i|2=522=α+β2

 α=5 and β=2            α2+β2=29



Q 12 :    

Let the curve z(1+i)+z¯(1i)=4, zC, divide the region |z3|1 into two parts of area α and β. Then |αβ| equals :          [2025]

  • 1+π3

     

  • 1+π6

     

  • 1+π4

     

  • 1+π2

     

(4)

Let z = x + iy, then from given equation, we have

(x + iy)(1 + i) + (xiy)(1 – i) = 4

 x + ix + iyy + xixiyy = 4

 2x – 2y = 4  xy = 2

Now, |z3|1  (x3)2+y21

β = Area of shaded region = π(1)2412×1×1

                                           = (π412) sq. units

α = Area of unshaded region inside the circle

   =34π(1)2+12×1×1=(3π4+12) sq. units

 Now, |αβ| = difference of area

 = (3π4+12)(π412)=π2+1.



Q 13 :    

Let |z¯i2z¯+i|=13, zC, be the equation of a circle with center at C. If the area of the triangle, whose vertices are at the point (0, 0), C and (α,0) is 11 square units, then α2 equals :          [2025]

  • 100

     

  • 8125

     

  • 12125

     

  • 50

     

(1)

Given, |z¯i2z¯+i|=13 and zC

 |z¯iz¯+i2|=23  3|xiyi|=2|xiy+i2|

 3|xi(y+1)|=2|xi(y12)|

 3x2+(y+1)2=2(x)2+(y12)2

Squaring on both sides, we get

9(x2+y2+1+2y)=4(x2+y2+14y)

 9x2+9y2+9+18y=4x2+4y2+14y

 5x2+5y2+22y+8=0

 x2+y2+225y+85=0

Centre (C)=(0,115)

Now, 12|0+0+α(0+115)|=11          [Given]

 11α5=22  α=10            α2=100.



Q 14 :    

The number of complex numbers z, satisfying |z|=1 and |zz¯+z¯z|=1, is:          [2025]

  • 8

     

  • 10

     

  • 6

     

  • 4

     

(1)

Let z=eiθ, then z¯=eiθ  zz¯=ei2θ

Also, |z| = 1

  |zz¯+z¯z|=1 |ei2θ+ei2θ|=1  |cos 2θ|=12

   Number of solutions = 8.



Q 15 :    

Let O be the origin, the point A be z1=3+22i, the point B(z2) be such that 3|z2|=|z1| and arg(z2)=arg(z1)+π6. Then          [2025]

  • area of triangle ABO is 113

     

  • ABO is an obtuse angled isosceles triangle

     

  • ABO is a scalene triangle

     

  • area of triangle ABO is 114

     

(2)

We have, z1=3+22i3|z2|=|z1| and arg(z2)=arg(z1)+π6

 arg(z2)arg(z1)=π6

  z2=|z2||z1|·z1ei(π/6)

            =13[(3+22i)(3+i)2]

  z2=123[322+i(26+3)]

Now, z1z2=3+22i(322+i)(26+3)23

                      =6+46i3+2226ii323

                       =3+22+i(263)23                        |z1-z2|=|z2|

    ABO is isosceles with angles π6,π6 and 2π3.

   Area of ABO = 1211×113sinπ6=1143.



Q 16 :    

Let |z182i|1 and |z22+6i|2, z1,z2C. Then the minimum value of |z1z2| is :          [2025]

  • 13

     

  • 3

     

  • 7

     

  • 10

     

(3)

AB=(82)2+(2+6)2=100=10

  |z1z2|min=1021=7



Q 17 :    

Let w1 be the point obtained by the rotation of z1=5+4i about the origin through a right angle in the anticlockwise direction, and w2 be the point obtained by the rotation of z2=3+5i about the origin through a right angle in the clockwise direction. Then the principal argument of w1-w2 is equal to          [2023]
 

  • -π+tan-1335

     

  • π-tan-1335

     

  • -π+tan-189

     

  • π-tan-189

     

(4)

w1=z1i=(5+4i)i=-4+5i 

w2=z2(-i)=(3+5i)(-i)=5-3i 

w1-w2=-9+8i 

Principal argument=π-tan-1(89)



Q 18 :    

Let C be the circle in the complex plane with centre z0=12(1+3i) and radius r = 1. Let z1=1+i and the complex number z2 be outside the circle C such that |z1-z0||z2-z0|=1. If z0,z1, and z2 are collinear, then the smaller value of |z2|2 is equal to            [2023]

  • 52

     

  • 72

     

  • 32

     

  • 132

     

(1)

z0=(12+3i2) 

z1=1+i

z1-z0=(1+i)-(12+3i2)=12-i2=1-i2

|z1-z0|=14+14=12 

As |z1-z0||z2-z0|=1

12|z2-z0|=1|z2-z0|=2

Slope of line forming  z0,z2= 32-112-1=12-12=-1

tanθ=-1=tan135°θ=135° 

|z2-z0|=2 

z2(12+2cos135°,32+2sin135°)

or 

z2(12-2cos135°,32-2sin135°) 

z2(-12,52) or z2(32,12)

|z2|2=14+254=264 or |z2|2=94+14=52; |z2|min2=52



Q 19 :    

If the center and radius of the circle |z-2z-3|=2 are respectively (α,β) and γ, then 3(α+β+γ) is equal to           [2023]

  • 12

     

  • 11

     

  • 10

     

  • 9

     

(1)

Centre of circle|z-az-b|=k (1) is

(k2b-ak2-1,0) and radius = k|a-b|k2-1 

Now, centre of circle |z-2z-3|=2 is (4×3-24-1,0)  i.e., (103,0) 

and radius = 2×13=23     α=103,  β=0,  γ=23 

3(α+β+γ)=3(103+0+23)=12



Q 20 :    

For all zC on the curve C1:|z|=4, let the locus of the point z+1z be the curve C2. Then:             [2023]

  • the curve C1 lies inside C2

     

  • the curves C1 and C2 intersect at 4 points

     

  • the curve C2 lies inside C1

     

  • the curves C1 and C2 intersect at 2 points

     

(2)

We have, curve C1:|z|=4 ∀ zC, which is a circle with centre (0, 0) and radius 4, therefore,

x2+y2=16                   (i) 

Now, z=4eiθ

z+1z=4eiθ+14eiθ=4eiθ+14e-iθ

=4(cosθ+isinθ)+14(cosθ-isinθ)=174cosθ+i154sinθ 

To eliminate θ, let α=174cosθ and β=154sinθ 

α2(174)2+β2(154)2=(174)2cos2θ(174)2+(154)2sin2θ(154)2=1 

   The curve C2 is x2(174)2+y2(154)2=1          (ii)

which is an ellipse with centre (0, 0). 

From (i) and (ii),

Hence, the curves C1 and C2 intersect at 4 points.