Q 11 :    

Let z1, z2 and z3 be three complex number on the circle |z| = 1 with arg(z1)=π4, arg(z2)=0 and arg(z2)=π4. If |z1z2+z2z3+z3z1|2=α+β2, α,βZ, then the value of α2+β2 is :          [2025]

  • 24

     

  • 41

     

  • 29

     

  • 31

     

(3)

Given, |z| = 1

Now, z1=eiπ4=12i2=1i2; z2=ei0=1;

z3=eiπ4=1+i2

Now, |z1z¯2+z2z¯3+z3z¯1|2=|1i2·1+1·1i2+(1+i2)2|2

=|2+(12)i|2=522=α+β2

 α=5 and β=2            α2+β2=29



Q 12 :    

Let the curve z(1+i)+z¯(1i)=4, zC, divide the region |z3|1 into two parts of area α and β. Then |αβ| equals :          [2025]

  • 1+π3

     

  • 1+π6

     

  • 1+π4

     

  • 1+π2

     

(4)

Let z = x + iy, then from given equation, we have

(x + iy)(1 + i) + (xiy)(1 – i) = 4

 x = ix + iyy + xixiyy = 4

 2x – 2y = 4  xy = 2

Now, |z3|1  (x3)2+y21

β = Area of shaded region = π(1)2412×1×1

                                           = (π412) sq. units

α = Area of unshaded region inside the circle

   =34π(1)2+12×1×1=(3π4+12) sq. units

 Now, |αβ| = difference of area

    (3π4+12)(π412)=π2+1.



Q 13 :    

Let |z¯i2z¯+i|=13, zC, be the equation of a circle with center at C. If the area of the triangle, whose vertices are at the point (0, 0), C and (α,0) is 11 square units, then  equals :          [2025]

  • 100

     

  • 8125

     

  • 12125

     

  • 50

     

(1)

Given, |z¯i2z¯+i|=13 and zC

 |z¯iz¯+i2|=23  3|xiyi|=2|xiy+i2|

 3|xi(y+1)|=2|xi(y12)|

 3x2+(y+1)2=2(x)2+(y12)2

Squaring on both sides, we get

9(x2+y2+1+2y)=4(x2+y2+14y)

 9x2+9y2+9+18y=4x2+4y2+14y

 5x2+5y2+22y+8=0

 x2+y2+225y+85=0

Centre (C)=(0,115)

Now, 12|0+0+α(0+115)|=11          [Given]

 11α5=22  α=10            α2=100.



Q 14 :    

The number of complex numbers z, satisfying |z|=1 and |zz+z¯z|=1, is:          [2025]

  • 8

     

  • 10

     

  • 6

     

  • 4

     

(1)

Let z=eiθ, then z¯=eiθ  zz=ei2θ

Also, |z| = 1

  |zz+z¯z|=1 |ei2θ+ei2θ|=1  |cos 2θ|=12

   Number of solutions = 8.



Q 15 :    

Let O be the origin, the point A be z1=3+22i, the point B(z2) be such that 3|z2|=|z1| and arg(z2)=arg(z1)+π6. Then          [2025]

  • area of triangle ABO is 113

     

  • ABO is an obtuse angled isosceles triangle

     

  • ABO is a scalene triangle

     

  • area of triangle ABO is 114

     

(2)

We have, z1=3+22i3|z2|=|z1| and arg(z2)=arg(z1)+π6

 arg(z2)arg(z1)=π6

  z2=|z2||z1|·z1ei(π/6)

            =13[(3+22i)(3+i)2]

  z2=123[322+i(26+3)]

Now, z1z2=3+22i(322+i)(26+3)23

                      =6+46i3+2226ii323

                       =3+22+i(263)23

    ABO is isosceles with angles π6,π6 and 2π3.

   Area of ABO = 1211×113sinπ6=1143.



Q 16 :    

Let |z182i|1 and |z22+6i|2, z1z2C. Then the minimum value of |z1z2| is :          [2025]

  • 13

     

  • 3

     

  • 7

     

  • 10

     

(3)

AB=(82)2+(2+6)2=100=0

  |z1z2|min=1021=7