Q 1 :    

If the coefficients of x4,x5 and x6 in the expansion of (1+x)n are in the arithmetic progression, then the maximum value of n is:               [2024]

  • 14

     

  • 21

     

  • 7

     

  • 28

     

(A)

As (1+x)n=C0n+C1nx1+C2nx2++Cnnxn

     C5n-C4n=C6n-C5n  [Since,C4n,C5nandC6n are in A.P.]

n!5!(n-5)!-n!4!(n-4)!=n!6!(n-6)!-n!5!(n-5)!

n-95!(n-5)!(n-4)=n-116!(n-6)!(n-5)

6(n-9)=(n-11)(n-4)

n2-21n+98=0n=21±441-3922=14,7

     nmax=14

 

 



Q 2 :    

The coefficient of x70 in x2(1+x)98+x3(1+x)97+x4(1+x)96++x54(1+x)46 is Cp-Cq.4699 Then a possible value of p+q is:               [2024]

  • 68

     

  • 83

     

  • 55

     

  • 61

     

(B)

We have, x2(1+x)98+x3(1+x)97++x54(1+x)46

It is a G.P. with first term =x2(1+x)98

and common ratio =x1+x

     Sum of these terms =x2(1+x)98((x1+x)53-1x1+x-1)

=x2(1+x)98((1+x)-x53(1+x)-52)

=x2(1+x)99coeff.of x68-x55(1+x)46coeff. of x15                      [ we need coefficient of x70]

=C6899-C1546=Cp99-Cq46              ( Given)

Hence, p+q=83

 



Q 3 :    

Let α=r=0n(4r2+2r+1)Crn and β=(r=0nCrnr+1)+1n+1. If 140<2αβ<281, then the value of n is ________.            [2024]



(5)

α=r=0n(4r2+2r+1)Crn

=4r=1nr2nrCr-1n-1+2r=1nrnrCr-1n-1+r=0nCrn

=4nr=1nr·Cr-1n-1+2nr=1nCr-1n-1+r=0nCrn

=4n(n+1)2n-2+2n2n-1+2n=2n[n(n+1)+n+1]

=2n[n2+2n+1]=2n(n+1)2

Now, β=r=0nCrnr+1+1n+1=r=0nCr+1n+1n+1+1n+1

=1n+1·2n+12αβ=2·2n(n+1)2×(n+1)2n+1=(n+1)3

Given that, 140<2αβ<281140<(n+1)3<281

Now, for n=4;(n+1)3=53=125

         for n=5;(n+1)3=63=216

         for n=6;(n+1)3=73=343

Hence, the value of n=5



Q 4 :    

The remainder when 4282024 is divided by 21 is ______ .             [2024]



(1)

4282024=(420+8)2024

=C02024(420)2024+C12024(420)2023(8)1++C20232024(420)(8)2023+C20242024(8)2024

=420 [Some integer] +641012

=21×20 [Some integer] +(63+1)1012

=21×20 [Some integer] +63×Some integer + 1

=21×20 [Some integer]  +21×3×Some integer + 1 

Hence, remainder = 1



Q 5 :    

If the coefficient of x30 in the expansion of (1+1x)6(1+x2)7(1-x3)8;x0 is α, then |α| equals ______ .     [2024]



(678)

We have, (1+1x)6(1+x2)7(1-x3)8,x0

=(1+6x+15x2+20x3+15x4+6x5+1x6)(1+x2)7(1-x3)8

=(1+6x+15x2+20x3+15x4+6x5+1x6)×(1+7x2+21x4+35x6+35x8+21x10+7x12+x14)

1-8x3+28x6-56x9+70x12-56x15+28x18-8x21+x24

Coefficient of x30 in the expansion of (1+1x)6(1+x2)7(1-x3)8

=28×7+28×15-8×21×6-8×20×7-8×6+15×35+35+15×21+7

=196+420-1008-1120-48+525+35+315+7

=-678

    |α|=678



Q 6 :    

If C1112+C2113++C91110=nm with gcd(n,m)=1, then n+m is equal to _______ .            [2024]



(2041)

C1112+C2113++C91110

=(C011+C1112+C2113++C91110+C101111+C111112)-1-1-112

=211+1-112-2-112=212-2612=407012=20356

        n+m=2035+6=2041



Q 7 :    

Remainder when 643232 is divided by 9 is equal to _____ .         [2024]



(1)

We have, ((64)32)32=((82)32)32=82048

=(9-1)2048

=92048-C1204892047++C2048=9k+12048

So, remainder = 1



Q 8 :    

Let α=k=0n((Ckn)2k+1) and β=k=0n-1(Ck Ck+1nnk+2). If 5α=6β, then n equals ________ .                    [2024]



(10)

We have, α=k=0n((Ckn)2k+1) and β=k=0n-1(Ck Ck+1nnk+2)

Now, α=k=0nCknk+1·Ckn

=k=0nCk+1n+1n+1·Cn-kn=1n+1k=0nCk+1·Cn-knn+1

=1n+1·Cn+12n+1

Now, β=k=0n-1Cn-k·nn+1(k+2)(n+1)·Ck+1n

=1n+1k=0n-1Cn-k·Ck+2n+1n=1n+1·Cn+22n+1

      βα=Cn+22n+1Cn+12n+1=(2n+1-n-1)!·(n+1)!(2n+1-n-2)!·(n+2)!

=n!·(n+1)!(n-1)!(n+2)(n+1)!=nn+2=56

n=10