Q 1 :    

Among the statements

(S1):20232022-19992022 is divisible by 8

(S2):13(13)n-11n-13 is divisible by 144 for infinitely many n                [2023]

  • only (S2) is correct

     

  • both (S1) and (S2) are incorrect

     

  • both (S1) and (S2) are correct

     

  • only (S1) is correct

     

(3)

As we know that xn-yn is always divisible by x-y

  20232022-19992022 is divisible by 2023 - 1999 = 24, which is divisible by 8.       S1 is true.

Also, 13(13)n-11n-13=13(12+1)n-11n-13

=13[C0n12n+C1n12n-1+C2n12n-2++Cnn]-11n-13

=13[C0n12n+C1n12n-1++Cn-2n122]+13·12·n+13-11n-13

=13×122[C0n12n-2+C1n12n-3++Cn-2n]+145n

Which is divisible by 144, for all n144.

i.e., It is divisible by 144 for infinitely many nN.

   S2 is also true.



Q 2 :    

25190-19190-8190+2190 is divisible by                  [2023]

  • both 14 and 34

     

  • 34 but not by 14   

     

  • 14 but not by 34       

     

  • neither 14 nor 34  

     

(2)

Given,  25190-19190-8190+2190

So, (17+8)190-8190+(19-17)190-19190

=C019017190+C119017189×8++8190-8190 +C019019190-C119019189×17++17190-19190

=17(2K1)-17(2K2), where K1 and K2 are integers.

So, given number is divisible by 34 but not by 14.



Q 3 :    

Let the number (22)2022+(2022)22 leave the remainder α when divided by 3 and β when divided by 7. Then (α2+β2) is equal to             [2023]

  • 20 

     

  • 13

     

  • 5

     

  • 10

     

(3)

We are, (22)2022+(2022)22=(21+1)2022+(2022)22

Here (2022)22 is divisible by 3 as 2022 is divisible by 3.  

Expanding (21+1)2022, we get  

(21+1)2022=C02022(21)2022+C12022(21)2021++C20222022(1)2022

                      =[(3)2022(7)2022+C12022(3)202172021+]+1

                      =3[(3)2021(7)2022+C12022(3)2020(7)2021+]+1

                      =3m+1  Remainder, α=1

Also,  (21+1)22+(2023-1)22

         =7[(3)2022(7)2021+C12022(3)2021(7)2020+]+1+C022(2023)22-C122(2023)21+-C2122(2023)+C2222 

          =(7r1+1)+7[(721)(289)22-C122(7)20(289)21+-C2122(289)]+1

           =(7r1+1)+(7r2+1)=7(r1+r2)+2=7n+2

Remainder, β=2

Now, α2+β2=12+22=5



Q 4 :    

If 1n+1Cnn+1nCn-1n+....+12C1n+C0n=102310, then n is equal to                  [2023]

  • 8

     

  • 9

     

  • 6

     

  • 7

     

(2)

1n+1Cnn+1nCn-1n++C0n

=r=0nCrnr+1=1n+1r=0nCr+1n+1=1n+1(2n+1-1)=102310=210-110

So, n+1=10n=9



Q 5 :    

The sum of the coefficients of the first 50 terms in the binomial expansion of (1-x)100, is equal to              [2023]

  • C50101

     

  • -C4999

     

  • -C50101

     

  • C4999

     

(2)

(1-x)100=C0100-C1100x+C2100x2-C3100x3++C100100x100

or  
(1-x)100=C0-C1x+C2x2-C3x3++C100x100

If x = 1, then  

      0=C0-C1+C2-C3+-C99+C100

0=2(C0-C1+C2--C49)+C50

C0-C1+C2--C49=-C502=-12100!50!50!=-99!50!49!

C0-C1+C2--C49=-C4999



Q 6 :    

Fractional part of the number 4202215 is equal to                        [2023]

  • 115

     

  • 415

     

  • 1415

     

  • 815

     

(1)

We have, {4202215}={(42)101115}={(1+15)101115}

={115+15101015+}={115+0+}={115}



Q 7 :    

The value of 11! 50!+13! 48!+15! 46!+...+149! 2!+151! 1! is               [2023]

 

  • 25150!

     

  • 25050!

     

  • 25151!

     

  • 25051!

     

(4)

11!50!+13!48!+15!46!++149!2!+151!1! 

=151![51!1!50!+51!3!48!+51!5!46!++51!49!2!+51!51!1!] 

=151![C151+C351++C5151] 

=151!251-1=151!250



Q 8 :    

The value of r=022Cr Cr2322 is                     [2023]

  • C2445

     

  • C2345

     

  • C2344

     

  • C2244

     

(2)

r=022Cr22Cr23

=r=022Cr22C23-r23

=C2322+23=C2345



Q 9 :    

If (C130)2+2(C230)2+3(C330)2+...+30(C3030)2=α60!(30!)2, then α is equal to           [2023]

  • 60 

     

  • 10 

     

  • 15   

     

  • 30

     

(3)

Given, (C130)2+2(C230)2+3(C330)2++30(C3030)2=α60!(30!)2

r=130r·(Cr30)2=r=130r·Cr30·Cr30

=r=130r·30r·Cr-129·Cr30 =r=13030·Cr-129C30-r30=30 C3059

 3059!30!29!3030=15·60!(30)2   α=15

 



Q 10 :    

Let x=(83+13)13 and y=(72+9)9. If [t] denotes the greatest integer t, then            [2023]

  • [x] is even but [y] is odd 

     

  • [x] + [y] is even

     

  • [x] and [y] are both odd   

     

  • [x] is odd but [y] is even

     

(2)

 x=(83+13)13=C013·(83)13+C113(83)12(13)1+

And x'=(83-13)13=C013(83)13-C113(83)12(13)1+

   x-x'=2[C113·(83)12(13)1+C313(83)10·(13)3+]

Thus, x-x' is an even integer, hence [x] is even.

Now, y=(72+9)9=C09(72)9+C19(72)8(9)1+C29(72)7(9)2+

And y'=(72-9)9=C09(72)9-C19(72)8(9)1+C29(72)7(9)2

   y-y'=2[C19(72)8(9)1+C39(72)6(9)3+]

Thus, y-y' is an even integer, hence [y] is even.