Q 11 :    

The sum of all rational terms in the expansion of (2+3)8 is equal to          [2025]

  • 3763

     

  • 18817

     

  • 16923

     

  • 33845

     

(2)

We have,

(2+3)8=C0828+C1827(3)+...+C88(3)8

But, for rational terms, we take only those terms whose exponent is an even number.

Required sum = C08(2)8+C28(2)6·(3)2+C48(2)4(3)4+C68(2)2(3)6+C88(3)8

                        = 28+28×26×3+70×24×9+28×22×27+81

                        = 256 + 5376 + 10080 + 3024 + 81 = 18817.



Q 12 :    

If 12·(C115)+22·(C215)+32·(C315)+...+152·(C1515)=2m·3n·5k, where m, n, k  N, then m + n + k is equal to :          [2025]

  • 21

     

  • 18

     

  • 20

     

  • 19

     

(4)

Using formula, r=1nr2 Crn=n(n+1)2n2

For n = 15

r=115r2 Cr15=15×16×213

3×5×24×213

217×31×51

On comparing terms, we get m = 17, n = 1 and k = 1

Thus, m + n + k = 19.



Q 13 :    

Let α,β,γ and δ be the coefficients of x7,x5,x3 ands x respectively in the expansion of (x+x31)5+(xx31)5, x>1. If u and v satisfy the equations αu+βv=18, γu+δv=20, then u + v equals :          [2025]

  • 5

     

  • 3

     

  • 4

     

  • 8

     

(1)

We have, (x+x31)5+(xx31)5

      = 2{C05x5+C25x3(x31)+C45x(x31)2}

                                 [(x+a)n+(xa)n=2(C0nxn+C2nxn2a2+...)]

      =2{5x7+10x6+x510x410x3+5x}

On comparing, we get

          α=10, β=2, γ=20, δ=10

Now, 10u + 2v = 18 and – 20u +10v = 20

 u = 1, v = 4

Hence, u + v = 5.



Q 14 :    

The remainder when ((64)(64))(64) is divided by 7 is equal to          [2025]

  • 3

     

  • 1

     

  • 6

     

  • 4

     

(2)

Let A=((64)(64))(64)=(64)642

       A=(1+63)642, let 642=n

Expanding by binomial

       A=(1+63)n=1+C1n(63)+C2n(63)2+...=1+63λ=1+7(9λ)

   When ((64)(64))(64) is divisible by 7 then remainder is 1.



Q 15 :    

If in the expansion of (1+x)p(1x)q, the coefficients of x and x2 are 1 and –2, respectively, then p2+q2 is equal to :           [2025]

  • 18

     

  • 8

     

  • 20

     

  • 13

     

(4)

(1+x)p(1x)q=(C0p+C1x+C2px2+...)(C0q-C1qx+C2px2+...)

Coeff. of xC0pC1q+C1pC0q=1

 pq=1          ... (i)

Coeff. of x2C0pC2qC1pC1q+C2pC0q=2

 q(q1)2pq+p(p1)2=2

 q2q2pq+p2p=4

 1(p+q)=4          [ q2+p22pq=(pq)2]

 p+q=5        ... (ii)

On solving equation (i) and (ii), we get p = 3 and q = 2.

So, .p2+q2=13



Q 16 :    

Suppose A and B are the coefficients of 30th and 12th terms respectively in the binomial expansion of (1+x2)2n1. If 2A = 5B, then n is equal to:          [2025]

  • 22

     

  • 19

     

  • 21

     

  • 20

     

(3)

Given : A = Coefficient of 30th term in (1+x2)2n1

            B = Coefficient of 12th term in (1+x2)2n1

They can also be written as

           A=C292n1 and B=C112n1

Since, 2A = 5B, then

          2·C292n1 = 5·C112n1

  2·(2n1)!29!(2n30)! = 5·(2n1)!11!(2n12)!

  130×29×28×...×12

        =1(2n12)(2n13)(2n14)...(2n29)×12

On comparing, we get

          2n – 12 = 30  n = 21.



Q 17 :    

The remainder, when 7103 is divided by 23, is equal to:          [2025]

  • 6

     

  • 14

     

  • 9

     

  • 17

     

(2)

We have, 7103=7(7102)=7(343)34=7(3452)34

=7(2)34=7(2)34=7·22·232=28·(256)4=28(253+3)4

=28(3)4=28×81=(23+5)(69+12)=(5)(12)=60

   Remainder = 14.



Q 18 :    

The sum of the series 2×1×C4203×2×C520+4×3×C6205×4×C720+...+18×17×C2020, is equal to __________.          [2025]



(34)

Let 2×1×C4203×2×C520+...+18×17×C2020=A

Using binomial theorem,

(1+x)20=C020+C120x+C220x2+C320x3+...+C2020x20

(1+x)20x2=1x2+20x+C220+C320x+...+C2020x18

Differentiate with respect to x, we get

   2x(1+x)19(9x1)x4=2x320x2+C320+2·C420x+...+18C2020x17

   2(1+x)19(9x1)x3=2x320x2+C320+2·C420x+...+18C2020x17

Again, differentiate with respect to x, we get

   2[x3(1+x)19·9+x3(9x1)·19(1+x)18(1+x)19(9x1)·3x2]x6

=6x4+40x3+2·1·C420+3·2·C520x+...+18·17·C2020x16

Put x = –1 in above equation,

      0 = 6 – 40 + A

 A = 34.



Q 19 :    

The product of the last two digits of (1919)1919 is __________.          [2025]



(63)

We have, (1919)1919=(19201)1919

        =C01919(1920)1919C11919(1920)1918+...+C19181919(1920)C19191919

        =(1920)19191919(1920)1918+...+1919(1920)1

        =100λ+1919(1920)1

                    [As all terms will have 100 as multiple except the last two terms]

        =100λ+36844801=100λ+3684479

   Last two digits will be 79

So, required product = 7×9=63.