Q 41 :    

Let y = y(x) be the solution curve of the differential equation x(x2+ex)dy+(ex(x2)yx3)dx=0, x>0, passing through the point (1, 0). Then y(2) is equal to          [2025]

  • 22e2

     

  • 44+e2

     

  • 44e2

     

  • 22+e2

     

(2)

We have, x(x2+ex)dy+(ex(x2)yx3)dx=0

 x(x2+ex)dydx+ex(x2)y=x3

 dydx+ex(x2)x(x2+ex)y=x3(x2+ex)x

Where, P=ex(x2)x(x2+ex) and Q=x2(x2+ex)

I.F.=eex(x2)x(x2+ex)dx=eex+2xex+x2dx2xdx=eln|ex+x2|2 ln x

I.F.=1+exx2

Now, y·(1+exx2)=x2x2+ex·x2+exx2dx+C

 y(1+exx2)=x+C

It is passing through the point (1, 0), then

C = –1

So, y(1+exx2)=x1

Then y(2)=44+e2



Q 42 :    

Let y = y(x) be the solution of the differential equation (x2+1)y'2xy=(x4+2x2+1) cos x, y(0) = 1. Then 33y(x)dx is :          [2025]

  • 18

     

  • 36

     

  • 30

     

  • 24

     

(4)

We have, (x2+1)dydx2xy=(x4+2x2+1) cos x

 dydx(2xx2+1)y=(x2+1)2cos x(x2+1)=(x2+1) cos x          (Linear D.E.)

Here, P=2x(x2+1), Q=(x2+1) cos x

I.F.=ePdx=e2x(x2+1)dx=1(x2+1)

Thus, the solution of linear D.E. is given by

 y·1(x2+1)=(x2+1)cos x·1(x2+1)dx+c

 yx2+1=sin x+c  11=0+c  c=1          [ y(0) = 1]

  y=(x2+1)(sin x+1)

33y(x)dx=33(x2+1)(sin x+1)dx

=33(x2sin x+x2+sin x+1)dx

33x2sin xdx+33x2dx+33sin xdx+331 dx

= 0 + 18 + 0 + 6 = 24



Q 43 :    

Let f(x) = x – 1 and g(x)=ex for xR. If dydx=(e2xg(f(f(x)))yx), y(0) = 0, then y(1) is          [2025]

  • e1e4

     

  • 2e1e3

     

  • 1e3e4

     

  • 1e2e4

     

(1)

f(x) = x – 1 and g(x)=ex

f(f(x)) = f(x – 1) = (x – 1) – 1 = x – 2

g(f(f(x)))=g(x2)=ex2

Now, dydx+yx=e2xex2  dydx+yx=ex22x

Which is a linear differential equation

  I.F.=e1xdx=e2x

   Solution of differential equation is given by

ye2x=ex22xe2xdx

 ye2x=ex2dx  ye2x=ex2+C

Now, y(0) = 0

 0=e2+C  C=e2

 y(x)=ex22xe22x

Now, y(1)=e122e22=e3e4=e1e4



Q 44 :    

Let x = x(y) be the solution of the differential equation y2dx+(x1y)dy=0. If x(1) = 1, then x(12) is :         [2025]

  • 3 + e

     

  • 32+e

     

  • 12+e

     

  • 3 – e

     

(4)

We have, y2dx+(x1y)dy=0

 y2dx=(1yx)dy  dxdy+xy2=1y3,

which is a linear D.E. with P=1y2 and Q=1y3

I.F.=ePdy=e1y2dy=e1y

   Solution is given by x·e1/y=1y3·e1/ydy+c

Putting 1y=t  1y2dy=dt

 x·e1y=t·etdy+c  x·e1y=et(t1)+c

 x·e1y=e1y(1+1y)+c  x=1+1y+ce1/y

Now, at x(1) = 1, i.e., when x = 1, y = 1

 1=1+1+ce  c=1e

   Solution is, x=1+1y1e(e1/y)

  x(12)=1+21e×e2=3e



Q 45 :    

If x = f(y) is the solution of the differential equation (1+y2)+(x2etan1y)dydx=0, y(π2,π2) with f(0) = 1, then f(13) is equal to :          [2025]

  • eπ/6

     

  • eπ/12

     

  • eπ/3

     

  • eπ/4

     

(1)

dxdy+x1+y2=2etan1y1+y2, which is linear differential equation of first order.

I.F.=edy1+y2=etan1y

Thus, the required solution is given by

xetan1y=2(etan1y)21+y2dy

Put tan1y=t, dy1+y2=dt           xetan1y=e2 tan1y+c

Given, f(0) = 1, we get 1 = 1 +  c = 0

Therefore, x=etan1y

 f(13)=eπ6



Q 46 :    

Let a curve y = f(x) pass through the points (0, 5) and (loge2,k). If the curve satisfies the differential equation 2(3+y)e2xdx(7+e2x)dy=0, then k is equal to          [2025]

  • 16

     

  • 32

     

  • 8

     

  • 4

     

(3)

Given, 2(3+y)e2xdx(7+e2x)dy=0

 dydx=2(3+y)e2x(7+e2x)

 dydx2e2x(7+e2x)×y=6e2x(7+e2x)

  I.F.=e(2e2x7+e2x)dx=17+e2x

  y×17+e2x=6e2x(7+e2x)2dx  y7+e2x=3(7+e2x)+c

Since, f(x) pass through the points (0, 5) and (loge2,k).

Then, 58=38+c  c=1

  y=3+(7+e2x)  y=e2x+4

  k=e2loge2+4

 k=eloge22+4  k=4+4=8



Q 47 :    

Let x = x(y) be the solution of the differential equation y=(xydxdy)sin(xy), y > 0 and x(1)=π2. Then cos (x(2)) is equal to :          [2025]

  • 2(loge2)21

     

  • 12(loge2)

     

  • 12(loge2)2

     

  • 2(loge2)1

     

(1)

We have, ydy=(xdyydx)sin(xy)

 dyy=(xdyydxy2)sin(xy)

 dyy=sin(xy)d(xy)

 log y=cosxy+C

 0=cosπ2+C          [ x=π2 and y=1]

 C=0

  log y=cosxy

Put y = 2 in equation (i), we get

 cosx2=log2

Now, cos x=2 cos2x21=2(loge2)21.



Q 48 :    

Let y = y(x) be the solution of the differential equation (xy5x21+x2)dx+(1+x2)dy=0, y(0) = 0. Then y(3) is equal to          [2025]

  • 152

     

  • 143

     

  • 532

     

  • 22

     

(3)

We have, (xy5x21+x2)dx+(1+x2)dy=0

 dydx=5x21+x2xy(1+x2)

 dydx+xy(1+x2)=5x21+x2

I.F.=ex1+x2dx=1+x2

y×1+x2=5x21+x2×1+x2dx+C

y1+x2=5x33+C

  y(0)=0

  C=0

 y=5x331+x2

  y(3)=5×3×331+3=532



Q 49 :    

Let for some function y = f(x), 0xtf(t)dt=x2f(x), x>0 and f(2) = 3. Then f(6) is equal to          [2025]

  • 3

     

  • 6

     

  • 1

     

  • 2

     

(3)

We have, 0xtf(x)dt=x2f(x), x>0

Differentiate the given equation, we get

          xf(x)=2xf(x)+x2f'(x)

 xf(x)=x2f'(x)  f(x)=xf'(x)

 f'(x)f(x)dx=1xdx  log f(x)=log x+log C 

 log f(x)=log x + log C  f(x)=Cx

We have, f(2)=3; f(2)=3=C2  C=6

So, f(x)=6x  f(6)=66=1



Q 50 :    

Let f : RR be a twice differentiable function such that f(2) = 1. If F(x) = xf(x) for all xR02xF'(x)dx=6 and 02x2F''(x)dx=40, then F'(2)+02F(x)dx is equal to :          [2025]

  • 13

     

  • 9

     

  • 11

     

  • 15

     

(3)

We have, 02xF'(x)dx=6          ... (i)

 [xF(x)]0202F(x)dx=6

 2F(2)02F(x)dx=6

 402F(x)dx=6           [ F(2)=2f(2)=2]

 02F(x)dx=2

Also,  02x2F''(x)dx=40

 [x2F'(x)]02202xF'(x)dx=40

 4F'(2)2(6)=40  F'(2)=13          [Using (i)]

Thus, F'(2)+02F(x)dx=132=11