Q 1 :    

The given circuit shows a uniform straight wire AB of 40 cm length fixed at both ends. In order to get zero reading in the galvanometer G, the free end of J is to be placed from B at                [2024]

[IMAGE 199]

  • 32 cm

     

  • 8 cm

     

  • 16 cm

     

  • 24 cm

     

(4)

The galvanometer shows zero reading when no current passes through it.

Condition of balanced metre bridge, R1R2=x(l-x)

Given : l=40cm,  R1=8cm,  R2=12cm

812=x40-x

or   320-8x=12x

    x=16cm

From B,  40-16=24 cm



Q 2 :    

A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3 : 2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is                [2020]
 

  • 1.0×10-2m

     

  • 1.0×10-1m

     

  • 1.5×10-1m

     

  • 1.5×10-2m

     

(2)

Unknown is X,R=10Ω.

[IMAGE 200]------------------

Here, l1l2=32  ;  XR=l1l2

X=32×10X=15Ω

Thus, 1.5 m length has resistance 15Ω hence, length of 1Ω of the resistance wire =1.515=0.1m=1.0×10-1m
 



Q 3 :    

The metre bridge shown is in balance position with PQ=l1l2. If we now interchange the positions of galvanometer and cell, will the bridge work? If yes, what will be the balanced condition?            [2019]

[IMAGE 201]

 

  • yes, PQ=l2-l1l2+l1

     

  • no, no null point

     

  • yes, PQ=l2l1

     

  • yes, PQ=l1l2

     

(4)

Yes, the bridge will work. For a balanced condition, the current drawn from the battery will be zero. Also, Pl1 and Ql2. Therefore, the condition PQ=l1l2 will remain same after interchanging the cell and galvanometer.
 

 



Q 4 :    

The resistances in the two arms of the meter bridge are 5 Ω and RΩ respectively. When the resistance R is shunted with an equal resistance, the new balance point is at 1.6l1. The resistance R is              [2014]

[IMAGE 202]

  • 10 Ω

     

  • 15 Ω

     

  • 20 Ω

     

  • 25 Ω

     

(2)

In the first case,

[IMAGE 203]----------------------------

At balance point

[IMAGE 204]----------------------------

5R=l1100-l1                                                    ...(i)

In the second case,

At balance point

5(R/2)=1.6l1100-1.6l1                             ..(ii)

Divide eqn. (i) by eqn. (ii), we get

        12=100-1.6l11.6(100-l1)

or    160-1.6l1=200-3.2l1

        1.6l1= 40 or  l1=401.6=25cm

Substituting this value in eqn. (i), we get:

        5R=2575   or  R=37525Ω=15Ω