Q 1 :    

A uniform wire of diameter d carries a current of 100 mA when the mean drift velocity of electrons in the wire is v. For a wire of diameter d2 of the same material to carry a current of 200 mA, the mean drift velocity of electrons in the wire is             [2024]

  • 4v

     

  • 8v

     

  • v

     

  • 2v

     

(2)

As we know, I=nAevd

where, I=100mA, diameter =d and vd=v

100 mA=nAev                                                                ...(i)

Now, I=200mA, diameter =d2 and vd=v'

200mA=nA'ev'                                                            ...(ii)

From equations (i) and (ii),

100200=nAevnA'ev'  ;  12=π×d2/4×vπ×d2/16×v'   ;      12=4vv'    v'=8v



Q 2 :    

A copper wire of radius 1 mm contains 1022 free electrons per cubic metre. The drift velocity for free electrons when 10 A current flows through the wire will be (Given, charge on electron =1.6×10-19C):             [2023]
 

  • 6.25×104π ms-1

     

  • 6.25π×103 ms-1

     

  • 6.25π ms-1

     

  • 6.25×105π ms-1

     

(2)

The relation between current and drift velocity is given as  I=neAvd

Rearranging and substituting the values,

vd=IneA=101022×1.6×10-19×π×10-6  ;  vd=6.25π×103 m/s

 



Q 3 :    

A copper wire of length 10 m and radius (10-2π)m has electrical resistance of 10 Ω. The current density in the wire for an electric field strength of 10 (V/m) is          [2022]

  • 104A/m2

     

  • 106A/m2

     

  • 10-5A/m2

     

  • 105A/m2

     

(4)

length, l=10m

radius, r=10-2πm

Resistance, R=10Ω

Electric field, E=10 V/m

The current density, j=σE=Eρ                              ...(i)

So, ρ=RAl=10×π×10-4π10=10-4 Ωm

From equation (i),                                                       ...(ii)

V=1010-4=105 A/m2



Q 4 :    

Column-I gives certain physical terms associated with flow of current through a metallic conductor. Column-II gives some mathematical relations involving electrical quantities. Match column-I and column-II with appropriate relations.                   [2021]

  Column-I   Column-II
(A) Drift velocity (P) mne2ρ
(B) Electrical Resistivity (Q) nevd
(C) Relaxation Period (R) eEmτ
(D) Current Density (S) EJ

 

  • (A)-(R), (B)-(Q), (C)-(S), (D)-(P)

     

  • (A)-(R), (B)-(S), (C)-(P), (D)-(Q)

     

  • (A)-(R), (B)-(S), (C)-(Q), (D)-(P)

     

  • (A)-(R), (B)-(P), (C)-(S), (D)-(Q)

     

(2)

The formula of drift velocity is vd=eEmτ

Current density J=IA=neAvdA=nevd

Resistivity is ρ=mne2ττ=mne2ρ

Resistance is R=VI  ;  ρlA=ElIρ=EAI=EJ

where, E=electric field, A=area of cross section

e=electronic charge, n=number of density of electrons,

τ=relaxation time.



Q 5 :    

A charged particle having drift velocity of 7.5×10-4ms-1 in an electric field of 3×10-10Vm-1, has a mobility in m2V-1s-1 of        [2020]

  • 2.25×1015

     

  • 2.5×106

     

  • 2.5×10-6

     

  • 2.25×10-15

     

(2)

Here, vd=7.5×10-4m/s,  E=3×10-10 V/m

Mobility, μ=vdE=7.5×10-43×10-10  ;  μ=2.5×106 m2V-1s-1