Q 11 :    

For the reaction,

H2(g)+I2(g)  2HI(g)

Attainment of equilibrium is predicted correctly by:                   [2025]

  •  

  •  

  •  

  •  

(3)

During the time interval from start of the reaction till equilibrium, concentration of reactants (H2 and I2) decrease and concentration of products (HI) increase. Once equilibrium is reached concentration of each species becomes constant.

 



Q 12 :    

At temperature T, compound AB2(g) dissociates as AB2(g)AB(g)+12B2(g) having degree of dissociation x (small compared to unity). The correct expression for  x in terms of Kp and p is                 [2025]

  • 2Kp2p3

     

  • Kp

     

  • 2Kpp3

     

  • 2Kpp4

     

(1)

AB2(g)AB(g)+12B2(g)t=0 (moles)a00t=∞ (moles)a(1-x)axax/2t=∞ (mole fraction)a(1-x)a(1+x2)axa(1+x2)axa(1+x2)t=∞ (partial pressure)a(1-x)a(1+x2)paxa(1+x2)pax/2a(1+x2)ppxpxp2Total=a(1+x/2)  
Kp=PAB×(PB2)1/2PAB2 =xp×(xp2)1/2p

(Kp)2=x3p/2

x=2(Kp)2p3



Q 13 :    

Consider the fraction

X2Y(g) = X2(g)+12Y2(g)

The equation representing correct relationship between the degree of dissociation (x) of X2Y(g) with its equilibrium constant Kp is _______ .   

Assume x to be very small.                        [2025]

  • x=2Kp2p3

     

  • x=Kp2p3

     

  • x=Kpp3

     

  • x=2Kpp3

     

(1)

X2Y(g)X2(g)+12Y2(g)t=0 (moles)a00t=∞ (moles)a(1-x)axax2t=∞ (mole fraction)a(1-x)a(1+x2)axa(1+x2)ax2a(1+x2)=(1-x1+x2)=(x1+x2)x2(1+x2)1xx2Partial pressures1×Px×Px×P2Total=a(1+x2)  


Kp=PX2×(PY2)1/2PX2Y=xP×(xP2)1/2P

Kp=x3/2P1/221/2

Kp2=x3P2

x=2Kp2P3

 



Q 14 :    

Consider the following chemical equilibrium of the gas phase reaction at a constant temperature:

A(g)B(g)+C(g)

If p being the total pressure, Kp is the pressure equilibrium constant and α is the degree of dissociation, then which of the following is true at equilibrium?          [2025]

  • If p value is extremely high compared to Kp,α1

     

  • When p increases α decreases

     

  • If Kp value is extremely high compared to p,α becomes much less than unity

     

  • When p increases α increases

     

(2)

A(g)B(g)+C(g)t=0 (moles)a00t=∞ (moles)a(1-α)aαaαt=∞ (mole fraction)1-α1+αα1+αα1+αt=∞ (partial pressure)  (1-α1+α)P(α1+α)P(α1+α)PTotal=a(1+α)

Kp=PB×PCPA =(α1+α)P×(α1+α)P(1-α1+α)P=α2P1-α2

As Kp is constant for a constant temperature, as P increases, α decreases.



Q 15 :    

Consider the following equilibrium,  

CO(g)+2H2(g)CH3OH(g)

0.1 mol of CO along with a catalyst is present in a 2 dm3 flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH3OH is formed.  The Kp0 is ______ ×10-3 (nearest integer).  

Given : R = 0.08 dm3 bar K-1 mol-1  

Assume only methanol is formed as the product and the system follows ideal gas behaviour.             [2025]



(74)

CO(g)+2H2(g)CH3OH(g)t=0 (moles)0.1x0t=∞ (moles)0.1-yx-2yy

As moles of CH3OH=y=0.04 mol

CO(g)+2H2(g)CH3OH(g)t=∞ (moles)0.1-0.04x-0.080.04=0.06

Total moles = 0.06+x-0.08+0.04=(0.02+x) mol

By ideal gas equation at equilibrium:

PV=nRT

5×2=(0.02+x)×0.08×500

x=0.23mol

Thus:

CO(g)+2H2(g)CH3OH(g)t=∞ (moles)0.060.23-0.08=0.150.04t=∞ (mole fraction)6251525425t=∞ (partial pressure)625×5=651525×5=3425×5=45Total=0.25


Kp=PCH3OHPCO×(PH2)2=4/5(65)×(3)2=74×10-3



Q 16 :    

37.8 g of N2O5 was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K

2N2O5(g)2N2O4(g)+O2(g)

The total pressure at equilibrium was found to be 18.65 bar. 

Then, Kp =  ______×10-2 [nearest integer]

Assume N2O5 to behave ideally under these conditions.

Given: R = 0.082 bar L mol-1 K-1                                          [2025]



(962)

Initial moles of N2O5(nN2O5)=Given mass of N2O5Molar mass of N2O5=37.8108mol=0.35mol

Initial pressure of N2O5=nN2O5RTV 

=0.35×0.082×5001bar=14.35bar

2N2O5(g)2N2O4(g)+O2(g)t=014.35 bar00  t=14.35-2p2pp  total=14.35+p

Total pressure at equilibrium = 14.35 + p = 18.65, p = 4.3 bar

Kp=PO2×PN2O42PN2O52 =p×(2p)2(14.35-2p)2

=4.3×(2×4.3)2(14.35-2×4.3)2=4.3×(2×4.3)2(5.75)29.62=962×10-2



Q 17 :    

The equilibrium constant for decomposition of H2O(g) 
H2O(g)H2(g)+12O2(g)   (ΔG°=92.34kJ mol-1)

is 8.0×10-3 at 2300 K and total pressure at equilibrium is 1 bar. 
Under this condition, the degree of dissociation (α) of water is _____×10-2 (nearest integer value). 

[Assume α is negligible with respect to 1]                                                [2025]



(5)

H2O(g)H2(g)+12O2(g)t=0 (mol)a00t=∞ (mol)a(1-α)aαaα2Total=a(1+α2)a(as α1)a(as α1)t=∞ (mol fraction)aa=1aαa=αaα2a=α2 t=∞1×Pα×Pα2×P(partial =1×1=α×1=α2×1pressure)=1=α=α2

 

Kp=(PO2)1/2×PH2PH2O =(α2)1/2×α1 =α3/22

8×10-3=α3/22

α3=128×10-6

α=(128)1/3×10-2=5.03×10-2