Q 11 :    

Let a,b,cN and a<b<c. Let the mean, the mean deviation about the mean, and the variance of the 5 observations 9, 25, a,b,c be 18, 4, and 1365, respectively. Then 2a+b-c is equal to _______ .                   [2024]



(33)

a,b,cN and a<b<c

Since, mean = 18 9+25+a+b+c5=18

34+a+b+c=90a+b+c=56

Mean deviation about the mean is 4

|9-18|+|25-18|+|a-18|+|b-18|+|c-18|5=4

9+7+|a-18|+|b-18|+|c-18|=20

|a-18|+|b-18|+|c-18|=4

Variance =1365

|xi-x¯|2n=1365

81+49+|a-18|2+|b-18|2+|c-18|25=1365

|a-18|2+|b-18|2+|c-18|2=136-130=6

Possible values are |a-18|2=1, |b-18|2=1 and |c-18|2=4

   a<b<c

  18-a=1, b-18=1 and c-18=2

a=17, b=19 and c=20

Hence, 2a+b-c=34+19-20=33



Q 12 :    

The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking, it was found that an observation was read as 10 in place of 12. If μ and σ2 denote the mean and variance of the correct observations respectively, then 15(μ+μ2+σ2) is equal to _________ .             [2024]



(2521)

We have, mean = 12, standard deviation = 3

Let x1,x2, , x15 be 15 observations

    n=15

x1+x2++x14+1015=12x1+x2++x14=170

Now, correct mean = μ

x1+x2++x14+1215=μ170+1215=μμ=18215

Standard deviation =11515i=115xi2-(i=115xi)2

3=11515×i=115xi2-(180)245=15×i=115xi2-32400

2025=15i=115xi2-32400

2025+32400=15(x12+x22++x142+100)

2295=x12+x22++x142+100

x12+x22++x142=2195

Correct Variance, σ2=1n2(15×i=115xi2-(i=1nxi)2)

=1(15)2(15×(x12+x22++x142+144)-(182)2)

=1225(15×(2339)-33124)=1225(35085-33124)

σ2=1961225

   15(μ+μ2+σ2)=15(18215+(18215)2+1961225)

=15(2730+33124+1961225)=3781515=2521



Q 13 :    

The variance σ2 of the data 

      xi     0    1    5    6    10    12    17
       fi    3    2    3    2    6     3     3

 

is ________ .                                                                                                           [2024]



(29)

Mean (x¯)=fixifi

=0×3+1×2+5×3+6×2+10×6+12×3+17×33+2+3+2+6+3+3

=17622=8

     Variance σ2=fi(xi-x¯)2fi

       =3(0-8)2+2(1-8)2+3(5-8)2+2(6-8)2+6(10-8)2+3(12-8)2+3(17-8)222

       =3×64+2×49+3×9+2×4+6×4+3×16+3×8122

      =64022=29.0929



Q 14 :    

If the mean and the variance of 6, 4, a, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then a + b + ab is equal to :          [2025]

  • 106

     

  • 103

     

  • 100

     

  • 105

     

(2)

Mean, x¯=6+4+a+8+b+12+10+13

 9=53+a+b8  a+b=7253=19

   a + b = 19          ... (i)

Variance, σ2=(69)2+(49)2+(a9)2+(89)2+(b9)2+(129)2+(109)2+(139)28

 9.25×8=9+25+1+9+1+16+(a9)2+(b9)2

 7461=(a9)2+(19a9)2          [Using (i)]

 13=(a9)2+(10a)2

 a2+8118a+a2+10020a=13

 2a238a=13-181

 a219a+84=0

 (a12)(a7)=0

 a=12 or 7  b=7 or 12

   a + b + ab = 12 + 7 + 84 = 103.



Q 15 :    

Let the Mean and Variance of five observations x1=1,x2=3,x3=a,x4=7 and x5=b,a>b be 5 and 10 respectively. Then the Variance of the observations n+xn,n=1,2,...,5 is          [2025]

  • 17

     

  • 16.4

     

  • 16

     

  • 17.4

     

(3)

We have, x¯=5 and σ2=10

Now, x¯=xin=1+3+a+7+b5 11+a+b5=5

 a+b=14

Also, σ2=xi2n(x¯)2

 10=12+32+a2+72+b2525

 a2+b2=116

Since, a > b  a = 10 and b = 4

Now, n+xn: 2, 5, 13, 11, 9

  σ2=22+52+132+112+925(2+5+13+11+95)2=8064=16.



Q 16 :    

A box contains 10 pens of which 3 are defective. A sample of 2 pens is drawn at random and let X denote the number of defective pens. Then the variance of X is          [2025]

  • 35

     

  • 215

     

  • 2875

     

  • 1115

     

(3)

X X=0 X=1 x=2
P(x) C27×C03C210=715 C17×C13C210=715 C07×C23C210=115

 

Mean, E(X)=XiP(Xi)=0+715+215=35

Now, variance (X)=E(X2)(E(X))2=2875

=(0+715+415)(35)2=1115925=2875

 



Q 17 :    

Let the mean and the standard deviation of the observation 2, 3, 3, 4, 5, 7, a, b be 4 and 2 respectively. Then the mean deviation about the mode of these observations is :          [2025]

  • 1

     

  • 34

     

  • 2

     

  • 12

     

(1)

Given observations are 2, 3, 3, 4, 5, 7, a, b.

Also, mean = 4 and S.D. = 2

 24+a+b8=4  a+b=8

               (2)2=22+32+32+42+52+72+a2+b2816

 112+a2+b2=18×8

 a2+b2=32  a=b=4

New numbers are 2, 3, 3, 4, 5, 7, 4, 4

Arrange the numbers in a ascending order

          2, 3, 3, 4, 4, 4, 5, 7

So, mode = 4.

   Mean deviation about mode

          =2+1+1+0+1+3+0+08=1.



Q 18 :    

The mean and standard deviation of 100 observations are 40 and 5.1, respectively. By mistake one observation is taken as 50 instead of 40. If the correct mean and the correct standard deviation are μ and σ respectively, then 10(μ+σ) is equal to          [2025]

  • 447

     

  • 445

     

  • 451

     

  • 449

     

(4)

We have, Mean = (x¯)=40

Mean (x¯)=xi100

 40×100=xi  xi=4000

Correct mean, μ=100(40)50+40100

=40110=39.9

Also, S.D.(σ) = 5.1

 (5.1)2=xi2100(x¯)2

 xi2=100×(40)2+100(5.1)2

=16×104+(5.1)2×100=162601

Correct σ2=xi2502+402100(μ)2

               =1617.011592.01=25  σ=5

  10(μ+σ)=10(39.9+5)=10×44.9=449.



Q 19 :    

A coin is tossed three times. Let X denote the number of times a tail follows a head. If μ and σ2 denote the mean and variance of X, then the value of 64(μ+σ2) is :         [2025]

  • 64

     

  • 48

     

  • 51

     

  • 32

     

(2)

When a coin is tossed three times, outcomes are:

          {HHH, HHT, HTH, THH, THT, TTH, HTT, and TTT}

Outcomes when tails does not follows a head (only once):

          {HHH, THH, TTT, TTH}

Outcomes when tail follows a head:

          {HHT, HTT, HTH, THT}

   Probability distribution table is given by

Xi 0 1
P(Xi) 1/2 1/2

Mean (μ)=XiPi=12

and variance (σ2)=Xi2Piμ2=1214=14

  64(μ+σ2)=64(12+14)=64×34=48.



Q 20 :    

For a statistical data x1,x2,...,x10 of 10 values, a student obtained the mean as 5.5 and i=110xi2=371. He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is          [2025]

  • 7

     

  • 5

     

  • 9

     

  • 4

     

(1)

i=110xi=5.5×10=55

Correct mean =i=110xi45+6+810=559+1410=6

Corrected i=110xi2=3714252+62+82=430

Corrected variance =Correctedi=110xi210(Corrected x)2

                                        =43010(6)2=4336=7