Q 1 :    

 In an ac circuit, the instantaneous current is zero, when the instantaneous voltage is maximum. In this case, the source may be connected to 

a) pure inductor

b) pure capacitor

c) pure resistor

d) combination of an inductor and capacitor

Choose the correct answer from the options given below                     [2024]

  • b, c and d only

     

  • a, b and d only

     

  • a and b only

     

  • a, b and c only

     

(B)     This is possible when phase difference is π2 between current and voltage.

 



Q 2 :    

A series LCR circuit is subjected to an ac signal of 200 V, 50 Hz. If the voltage across the inductor (L = 10 mH) is 31.4 V, then the current in this circuit is    [2024]

  • 68 A

     

  • 63 A

     

  • 10 A

     

  • 10 mA

     

(C)    Voltage across inductor VL=IXL

         31.4=I[Lω]

         31.4=I[L(2πf)]

         31.4=I[10×10-3(2×3.14)×50]I=10A

 



Q 3 :    

Given below are two statements:

 

Statement I: In an LCR series circuit, current is maximum at resonance.

 

Statement II: Current in a purely resistive circuit can never be less than that in a series LCR circuit when connected to same voltage source.

 

In the light of the above statements, choose the correct from the options given below:               [2024]

  • Statement I is true but Statement II is false

     

  • Statement I is false but Statement II is true

     

  • Both Statement I and Statement II are false

     

  • Both Statement I and Statement II are true

     

(D)       Statement-I

            Im=VmR2+(XL-XC)2, at resonance XL=XC

            Thus, Im=VmR

             Impendence is minimum therefore I is maximum at resonance.

            Statement-II

            I=(VR) in purely resistive circuit.

 



Q 4 :    

A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters the same. The current amplitude at resonance will be now                 [2024]

  • halved

     

  • Zero

     

  • same

     

  • double

     

(D)       At resonance: Z = R

           So I1R

           RhalvedI=2I,I becomes doubled.

 



Q 5 :    

In series LCR circuit, the capacitance is changed from C to 4C. To keep the resonance frequency unchanged, the new inductance should be          [2024]

  • reduced to L/4

     

  • increased by 2L

     

  • reduced by L/3

     

  • increased to 4L

     

(A)      ω'=ω

           1L'C'=1LCL'C'=LC

           L'(4C)=LC

           L'=L4

 



Q 6 :    

For a given series LCR circuit it is found that maximum current is drawn when value of variable capacitance is 2.5 nF. If resistance of 200 Ω and 100 mH inductor are being used in the given circuit.

The frequency of ac source is _________ ×103 Hz. (given π2=10)              [2024]



(10)      For maximum current, circuit must be in resonance.

            At resonance, XC=XL

           ωL=1ωCω2=1100×10-3×2.5×10-9=4×109

          (2πf)2=4×109

          f2=108f=104Hzf=10×103Hz



Q 7 :    

A series LCR circuit with L=100πmHC=10-3πF and R=10Ω, is connected across an ac source of 220V, 50 Hz supply. The power factor of the circuit would be _________ .            [2024]



(1)        Xc=1ωC=π2π×50×10-3=10Ω

           XL=ωL=2π×50×100π×10-3=10Ω

         XC=XL, Hence, circuit is in resonance

         power factor=RZ=RR=1