Q 1 :    

A force (3x2+2x-5)N displaces a body from x=2m to x=4m. Work done by this force is __________ J.             [2024]



(58)       Force, F=(3x2+2x-5)N,x1=2m and x2=4m

              Work done, W=x1x2F·dx=24(3x2+2x-5)dx

               W=[x3]24+[x2]24-5[x]24=[64-8]+[16-4]-5[4-2]=58J

 



Q 2 :    

A body of mass 50 kg is lifted to a height of 20 m from the ground in the two different ways as shown in the figures. The ratio of work done against the gravity in both the respective cases, will be         [2024]

  • 2 : 1

     

  • 1 : 2

     

  • 3 : 2

     

  • 1 : 1

     

(4)

Work done by gravity is path independent, it depends only on vertical displacement, so same work is done in both paths.

 



Q 3 :    

A block is simply released from the top of an inclined plane as shown in the figure above. The maximum compression in the spring when the block hits the spring is    [2024]

  • 1 m

     

  • 6 m

     

  • 5 m

     

  • 2 m

     

(4)

sin30°=h10h=5

At maximum compression

using Work-Energy Theorem,

Wgravity+Wfriction+Wspring=ΔKE

mgh-μmg(2+x)-12kx2=0-0

5×10×5-12×5×10(2+x)-12100×x2=0

250-50x2-[50+25x]=0

200-50x2-25x=0

2x2+x-8=0

x=-1±12+4×2×82×2x=-1±6541.77m

Nearest answer is 2m.



Q 4 :    

A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the coefficient of friction between the surfaces is 0.4, then the work done against friction (in J) is       [2024]

  • 4200

     

  • 3900

     

  • 4000

     

  • 4500

     

(3)

Given m=100kg, μ=0.4

Friction force, f=μmg=0.4×100×10=400N

Now W=f·s=400×10=4000J

 



Q 5 :    

A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of 60 by a force of 10 N parallel to the inclined surface as shown in the figure. When the block is pushed up by 10 m along the inclined surface, the work done against frictional force is [g=10m/s2]     [2024]

  • 53 J

     

  • 5 J

     

  • 5×103 J

     

  • 10 J

     

(2)

fk=μkN=μkmgcos60°

fk=0.1×10×12=0.5 N

Wfriction=-fk·S

                 =-(0.5)×10

Wfriction=-5 J



Q 6 :    

A force F=2i^+bj^+k^ is applied on a particle and it undergoes a displacement i^2j^k^. What will be the value of b, if work done on the particle is zero.          [2025]

  • 0

     

  • 12

     

  • 13

     

  • 2

     

(2)

Given, W = 0

 F·S=0

(2i^+bj^+k^)·(i^2j^k^)=0

22b1=0  b=12



Q 7 :    

A force F=α+βx2 acts on an object in the x-direction. The work done by the force is 5 J when the object is displaced by 1 m. If the constant α = 1 N then β will be          [2025]

  • 15 N/m2

     

  • 10 N/m2

     

  • 12 N/m2

     

  • 8 N/m2

     

(3)

F=α+βx2

Work done dW=F·dx

 W=F·dx=(α+βx2)dx

 W=|αx+βx33|01=α+β3=5

Given α = 1

So, β3=4  β=12 N/m2



Q 8 :    

A block of mass 25 kg is pulled along a horizontal surface by a force at an angle 45° with the horizontal. The friction coefficient between the block and the surface is 0.25. The block travels at a uniform velocity. The work done by the applied force during a displacement of 5 m of the block is:          [2025]

  • 970 J

     

  • 735 J

     

  • 245 J

     

  • 490 J

     

(3)

N=mgF2

Block travels with uniform velocity

F2=μ[mgF2]

F2=0.25[25×9.8F2]

 1.25F2=61.25

 F=61.25×21.25=492 N

Wext=FS cos 45°=492×5×12=245 J.



Q 9 :    

A force f=x2yi^+y2j^ acts on a particle in a plane x + y = 10. The work done by this force during a displacement from (0, 0) to (4 m , 2 m) is _____ Joule (round off to the nearest integer)          [2025]



(152)

y = 10 – x

W=04x2(10x)dx+02y2dy

=[10x33x44]04+[y33]02=640364+83=152.