Q 1 :    

Let the point, on the line passing through the points P(1, –2, 3) and Q(5, –4, 7), farther from the origin and at a distance of 9 units from the point P, be (α,β,γ). Then α2+β2+γ2 is equal to          [2024]

  • 160

     

  • 165

     

  • 150

     

  • 155

     

(4)

Line through PQ is given by

x14=y+22=z34=λ

Any point R on PQ will be R(4λ+1,2λ2,4λ+3)

Since, PR = 9 units (PR)2=81

 (4λ+11)2+(2λ2+2)2+(4λ+33)2=81

 16λ2+4λ2+16λ2=81

 36λ2=81  λ2=94  λ=±32

  R can be (7, –5, 9) or (–5, 1, –3)

Distance from origin of the points be 49+25+81 and 25+1+9i.e., 155,35

  Distance of (7, –5, 9) is farthest from origin

(α,β,γ)(7, 5, 9)

Hence α2+β2+γ2=72+(5)2+92=155.



Q 2 :    

Let P be the point of intersection of the lines x21=y45=z21 and x32=y23=z32. Then, the shortest distance of P from the line 4x = 2y = z is          [2024]

  • 147

     

  • 5147

     

  • 6147

     

  • 3147

     

(4)

L1 : x21=y45=z21=λ (say)

L2 : x32=y23=z32=μ (say)

For point of intersection P,

(λ+2,5λ+4,λ+2)=(2μ+3,3μ+2,2μ+3)

 λ+2=2μ+3,5λ+4=3μ+2,λ+2=2μ+3

 λ=1,μ=1

  Point P is (1, –1, 1)

Distance of point P from L3 : 4x = 2y = z

L3 : x14=y12=z1

Any point on L3 be R(α4,α2,α)

D.r.'s of PR : (α41,α2+1,α1)         PR(14,12,1)

 (α41)14+12(α2+1)+(α1)=0

 α1614+α4+12+α1=0  2116α=34  α=47

  R(17,27,47)

Now, RP=(171)2+(27+1)2+(471)2

=3649+8149+949=1267=3147.



Q 3 :    

Let d be the distance of the point of intersection of the lines x+63=y2=z+11 and x74=y93=z42 from the point(7, 8, 9). Then d2+6 is equal to          [2024]

  • 72

     

  • 75

     

  • 78

     

  • 69

     

(2)

Let x+63=y2=z+11=λ

 x=3λ6, y=2λ, z=λ1

and let x74=y93=z42=μ

 x=4μ+7, y=3μ+9, z=2μ+4

Since the given lines intersect so we have

3λ6=4μ+7, 2λ=3μ+9, λ1=2μ+4

 3λ4μ=13 and λ=2μ+5

 3(2μ+5)4μ=13  2μ=2

 μ=1 and λ=3

So, point of intersection is (3, 6, 2)

  d=(37)2+(68)2+(29)2

      =16+4+49=69

  d2+6=69+6=75.



Q 4 :    

If the line 2x3=3y24λ+1=4z makes a right angle with the line x+33μ=12y6=5z7, then 4λ+9μ is equal to :          [2024]

  • 13

     

  • 6

     

  • 5

     

  • 4

     

(2)

We have lines 2x3=3y24λ+1=4z and x+33μ=12y6=5z7 are perpendicular.

i.e., x23=y2/34λ+13=z41 and x(3)3μ=y1/262=z57 are perpendicular.

3(3μ)+4λ+13(3)+(1)(7)=0

9μ4λ1+7=0

9μ4λ+6=0  4λ+9μ=6.



Q 5 :    

Let (α, β, γ) be the image of the point (8, 5, 7) in the line x12=y+13=z25. Then α+β+γ is equal to :          [2024]

  • 16

     

  • 14

     

  • 18

     

  • 20

     

(2)

Let x12=y+13=z25=λ

 x=2λ+1, y=3λ1 and z=5λ+2

Clearly, PQ·(2i^+3j^+5k^)=0

 (2λ7)·2+(3λ6)·3+(5λ5)·5=0 

 38λ=57

 λ=5738=32

  (4, 72, 192) are the coordinates of Q.

Now, Q is the midpoint of PP'.

  8+α2=4, 5+β2=72, 7+γ2=192

 (α,β,γ)=(0,2,12)

  α+β+γ=14.



Q 6 :    

The shortest distance between the lines x32=y+157=z95 and x+12=y11=z93 is          [2024]

  • 83

     

  • 53

     

  • 43

     

  • 63

     

(3)

L1 : x32=y+157=z95

L2 : x+12=y11=z93

a1=3i^15j^+9k^, a2=i^+j^+9k^

b1=2i^7j^+5k^, b2=2i^+j^3k^

Shortest distance = =|(a2-a1)·(b1×b2)||b1×b2|

=|(4i^+16j^)·|i^j^k^275213|||b1×b2|

=|(4i^+16j^)·(16i^+16j^+16k^)||16i^+16j^+16k^|=192163=43.



Q 7 :    

Let P(α, β, γ) be the image of the point Q(3, –3, 1) in the line x01=y31=z11 and R be the point (2, 5, –1). If the area of the triangle PQR is λ and λ2=14K, then K is equal to :          [2024]

  • 81

     

  • 72

     

  • 36

     

  • 18

     

(1)

L : x01=y31=z11=μ be the given line.

Any point on L is given by M(μ, μ+3, μ+1)

Direction ratios of QM=(μ3, μ+6, μ)

Direction ratios of L = (1, 1, –1)

Now, QM  L

So, we have, 1·(μ3)+1·(μ+6)1·(μ)=0

 3μ+3=0

 μ=1

So, M(–1, 2, 2) is mid point of PQ.

 α+32=1, β32=2, γ+12=2

 P(α,β,γ)(5,7,3)

Area of PQR=12|PQ×QR|

 λ=12||i^j^k^8102182||

 λ=12|36i^+18j^+54k^|

 λ2=14(4536)

 λ2=1134=14K  k=113414=81.



Q 8 :    

If the shortest distance between the lines

L1 : r=(2+λ)i^+(13λ)j^+(3+4λ)k^, λR 

L2 : r=2(1+μ)i^+3(1+μ)j^+(5+μ)k^, μR

is mn, where gcd(m, n) = 1, then the value of m + n equals          [2024]

  • 384

     

  • 387

     

  • 390

     

  • 377

     

(2)

L1 : x21=y13=z34

L2 : x22=y33=z51

  a1=2i^+j^+3k^, a2=2i^+3j^+5k^

     n1=i^3j^+4k^, n2=2i^+3j^+k^

Shortest distance = |(a2a1)·(n1×n2)||n1×n2|

=|(2j^+2k^)·|i^j^k^134231|||n1×n2|

=|(2j^+2k^)·(15i^+7j^+9k^)(15)2+72+92|=32355=mn

On comparing, we get m = 32 and n = 355.

So, m + n = 32 + 355 = 387.



Q 9 :    

If the shortest distance between the lines xλ2=y43=z34 and x24=y46=z78 is 1329, then a value of λ is          [2024]

  • 1325

     

  • 1325

     

  • 1

     

  • –1

     

(3)

We have a=λi^+4j^+3k^, b=2i^+4j^+7k^ and p=2i^+3j^+4k^

Shortest distance, d=|(ba)×p|p||

ba=(2λ)i^+4k^

(ba)×p=|i^j^k^2λ04234|

     =i^(12)j^(84λ8)+k^(63λ)

     =12i^+4λj^+3(2λ)k^

  d=|144+16λ2+9(2λ)24+9+16|=1329          (Given)

 144+16λ2+36+9λ236λ=13

 25λ236λ+180=169  25λ236λ+11=0

 (25λ11)(λ1)=0  λ=1125 or 1.



Q 10 :    

The shortest distance between the lines x34=y+711=z15 and x53=y96=z+21 is           [2024]

  • 179563

     

  • 185563

     

  • 187563

     

  • 178563

     

(3)

Given lines can be written as

x34=y(7)11=z15 and x53=y96=z(2)1

a1=3i^7j^+k^, a2=5i^+9j^2k^, b1=4i^11j^+5k^

and b2=3i^6j^+k^

  a2a1=2i^+16j^3k^ and b1×b2=|i^j^k^4115361|=19i^+11j^+9k^

Shortest distance between two lines,

d=|(a2a1)·(b1×b2)||(b1×b2)|  d=|38+17627|361+121+81=187563.