Q 1 :    

What happens to freezing point of benzene when small quantity of naphthalene is added to benzene?                 [2024]

  • Increases

     

  • Remains unchanged

     

  • First decreases and then increases

     

  • Decreases

     

(D)

When a small quantity of naphthalene is added to benzene its freezing point decreases.

 



Q 2 :    

The osmotic pressure of a dilute solution is 7×105Pa at 273 K. Osmotic pressure of the same solution at 283 K is _______ ×104Nm-2.      [2024]



(73)

           Osmotic pressure(π) (for a non-electrolyte solution) is related to concentration (C) and temperature (T) as, 

           π=CRT, where R is universal gas constant

           π1=CRT1,π2=CRT2

           π2π1=T2T1

        π27×105Pa=283K273K

         π2=7×105×283273Pa

        =7.256×105Nm-2

        =72.56×104Nm-2

 



Q 3 :    

Mass of ethylene glycol (antifreeze) to be added to 18.6 kg of water to protect the freezing point at -24°C is _____ kg.

(Molar mass in g mol-1 for ethylene glycol 62, Kf of water = 1.86 K kg mol-1)               [2024]



(15)

            Freezing point of pure water Tfo=0°C

            Freezing point of ethylene glycol solution Tf=-24°C

            Depression in freezing point, ΔTf=Tfo-Tf=0°C-(-24°C)=24°C

            Value of difference of two temperatures is same in °C and K, thus

            ΔTf=24°C or 24 K

          ΔTf=i×m×kf

          Assuming glycol to be undissociated in water, i=1

           24=1×m×1.86

          m=241.86

         WglycolMglycol×Wwater (in kg)=241.86

         Wglycol62×18.6=241.86

          Wglycol=14880g=14.88kg

 



Q 4 :    

2.5 g of a non-volatile, non-electrolyte is dissolved in 100 g of water at 25°C. The solution showed a boiling point elevation by 2°C. Assuming the solute concentration in negligible with respect to the solvent concentration, the vapour pressure of the resulting aqueous solution is ____ mm of Hg (nearest integer).

 

[Given: Molal boiling point elevation constant of water (Kb)=0.52K.kg mol-1,1 atm pressure = 760 mm of Hg, Molar mass of water = 18 g mol-1]       [2024]



(711)

             ΔTb=m×kb

             2=m×0.52

            m=20.52m

           xsolute×1000xsolvent×Msolvent=20.52

            xsolute×1000xsolvent×18=20.52

             xsolutexsolvent=20.52×181000

              xsolventxsolute=1309

               xsolvent=1309+130=130139

              By Raoult's law:

              ΔTb=m×kb

              Psolution=Psolvent xsolvent

                            =760×130139mmHg

                            =710.8mmHg711mmHg

               Note: Psolvent is not given in question, question is solved by taking it as 760 mmHg which is not correct as 760 mmHg is vapor pressure of water at 100°C but temperature in question is 25°C.

 



Q 5 :    

2.7 Kg of each of water and acetic acid are mixed. The freezing point of the solution will be x °C. Consider the acetic acid does not dimerise in water, nor dissociates in water. x = _______ (nearest integer)

 

[Given: Molar mass of water = 18 g mol-1, acetic acid = 60 g mol-1

 

KfH2O:1.86Kkgmol-1

 

Kfacetic acid:3.90Kkgmol-1

 

Freezing point: H2O=273K, acetic acid =290K]                 [2024]



(31)

                 Moles of water=given massmolar mass=270018=150 mol

                 Moles of acetic acid=given massmolar mass=270060=45 mol

                 As water is in excess, it is solvent.

                Molality (m)=nacetic acidWwater (in kg)=452.7 m=16.667 m

                ΔTf=mkf(solvent)=mkf(water)

               =16.667×1.86°C=31°C

              Tf(water)-Tf(solution)=31°C

              0°C-Tf(solution)=31°C

              Tf(solution)=-31°C

 



Q 6 :    

An artificial cell is made by encapsulating 0.2 M glucose solution within a semipermeable membrane. The osmotic pressure developed when the artificial cell is placed within a 0.05 M solution of NaCl at 300 K is ______ ×10-1 bar. (Nearest Integer)

[Given: R = 0.083 L bar mol-1 K-1]

Assume complete dissociation of NaCl                   [2024]         



(25)

                 Osmotic pressure developed = Difference of osmotic pressure due to glucose solution difference of osmotic pressure due to NaCl solution.

                 =C1RT-iC2RT

                 =0.2RT-2×0.05RT

                 =0.1RT=0.1mol×0.083bar Lmol K×300K=25×10-1 bar

 



Q 7 :    

Considering acetic acid dissociates in water, its dissociation constant is 6.25×10-5. If 5 mL of acetic acid is dissolved in 1 litre water, the solution will freeze at -x×10-2°C, provided pure water freezes at 0 °C. x = ________ .(Nearest integer)

 

Given:      (Kf)water = 1.86 K kg mol-1.

 

                 density of acetic acid is 1.2 g mol-1.

 

                 molar mass of water = 18 g mol-1.

 

                 molar mass of acetic acid = 60 g mol-1.

 

                 density of water = 1 g cm-3

 

                  Acetic acid dissociates as

 

                  CH3COOHCH3COO+H                   [2024]



(19)

               WCH3COOH=density×volume=1.2gmL×5mL=6g

               WH2O=density×volume=1gmL×1000mL=1000g

                m=WCH3COOH×1000MCH3COOH×Wwater (in g)=6×100060×1000(in g)m=0.1m

                 CH3COOHCH3COO-+H+

                Ka=Cα21-αCα2

                α=KaC=6.25×10-50.1=0.025

                i=1+(n-1)α=1+(2-1)×0.025=1.025

               ΔTf=imkf=1.025×0.1×1.86C=0.19C

               Tf°-Tf=0.19C

               0-Tf=0.19C

               Tf=-0.19C=19×10-2C



Q 8 :    

Consider the dissociation of the weak acid HX as given below:

 

HX(aq)H+(aq)+X-(aq), Ka=1.2×10-5

 

[Ka: dissociation constant]

 

The osmotic pressure of 0.03 M aqueous solution of HX at 300 K is ______ ×10-2 bar (nearest integer).

 

[Given: R = 0.083 L bar mol-1 K-1]               [2024]



(76)

             HX(aq)H+(aq)+X-(aq)

             (t=0)     C

             (conc.)

             (t=)       C(1-α)      Cα             Cα

            (conc.) 

            Ka=Cα21-αCα2

           1.2×10-5=0.03α2

            α=1.2×10-50.03=0.02

           i=1+(n-1)α=1+(2-1)×0.02=1.02

           π=iCRT=1.02×0.03molL×0.083bar Lmol K×300K=76.2×10-2bar

 



Q 9 :    

0.05M CuSO4 when treated with 0.01M K2Cr2O7 gives green colour solution of Cu2Cr2O7. The two solutions are separated as shown below:

[SPM: Semi Permeable Membrane]

[IMAGE 220]

Due to osmosis:                                                                                                                [2024]

  • Green colour formation observed on side X.

     

  • Molarity of K2Cr2O7 solution is lowered.

     

  • Green colour formation observed on side Y.

     

  • Molarity of CuSO4 solution is lowered.

     

(4)

[IMAGE 221]

Solute particles do not move across SPM, so reaction between K2Cr2O7 and CuSO4 does not occur and green colour formation does not occur in either chamber. Net movement of solvent is from hypotonic (side X) to hypertonic (side Y) solution. Hence molarity of CuSO4 solution decreases.

 



Q 10 :    

When x×10-2 mL methanol (molar mass = 32 g; density = 0.792 g/cm3) is added to 100 mL water (density = 1 g/cm3), the following diagram is obtained.

[IMAGE 222]

x = ___________ (nearest integer)

[Given: Molal freezing point depression constant of water at 273.15 K is 1.86 K kg mol-1]                                                                           [2024]



(543)

ΔTf=mkf

(273.15-270.65)K=m×1.86 K kg mol-1

m=2.51.86m

Wmethanol×1000Mmethanol×Wwater (in g)=2.51.86

(dmethanol×Vmethanol)×1000Mmethanol×(dwater×Vwater)=2.51.86

(0.792g m L-1×x×10-2mL)×100032g mol-1×(1gm L-1×100mL)=2.51.86mol kg-1

x=543