Topic Question Set


Q 21 :    

Consider the relations R1 and R2 defined as aR1ba2+b2=1 for all a,bR and (a,b)R2(c,d)a+d=b+c for all (a,b),(c,d)N×N. Then                 [2024]

  • R1 and R2 both are equivalence relations

     

  • Only R1 is an equivalence relation

     

  • Only R2 is an equivalence relation

     

  • Neither R1 nor R2 is an equivalence relation

     

(C)

  Consider, (x,x)R1

  Then, x2+x21 for any xR

      R1 is not reflexive

  Hence, R1 is not an equivalence relation.

  For R2

  (i) Let (x,y)R(x,y)x+y=y+x, which is true for all x,yN.

   R2 is reflexive.

  (ii) Let (x,y)R(z,p)x+p=y+zp+x=z+y

   z+y=p+x(z,p)R(x,y)

   R2 is symmetric.

  (iii) Let (a,b)R(c,d)a+d=b+c                ...(i)

         (c,d)R(e,f)c+f=d+e                        ...(ii)

  From (i) and (ii), we have a+d+c+f=b+c+d+e

              a+f=b+e(a,b)R(e,f)

   R2 is transitive.

  So, R2 is an equivalence relation.



Q 22 :    

Let S = {1, 2, 3,…,10}. Suppose M is the set of all the subsets of S, then the relation R={(A,B):ABϕ;A,BM} is:               [2024]

  • symmetric and transitive only

     

  • reflexive only

     

  • symmetric and reflexive only

     

  • symmetric only

     

(D)

   Given, AMAA=ϕ, if A=ϕ

   So, R is not reflexive.

   If (A,B)RABϕBAϕ(B,A)R

   So, R is symmetric.

   If (A,B) and (B,C)RABϕ and BCϕ

   AC is not necessarily non-empty set.

   Hence, AC not necessarily belongs to R.

   So, R is not a transitive relation.

      Given relation is symmetric and reflexive only.

 



Q 23 :    

Let R be a relation on Z×Z defined by (a, b) R (c, d) if and only if ad-bc is divisible by 5. Then R is              [2024]

  • Reflexive but neither symmetric nor transitive

     

  • Reflexive, symmetric and transitive

     

  • Reflexive and transitive but not symmetric

     

  • Reflexive and symmetric but not transitive

     

(D)

   Reflexive: For (a,b)R(a,b)

   ab-ab=0 is divisible by 5.

   So,(a,b)R(a,b)   a,bZ

      R is reflexive.

   Symmetric : For (a,b)R(c,d), if ad-bc is divisible by 5.

   Then, bc-ad is also divisible by 5.

   So,(c,d)R(a,b) a,b,c,dZ

  R is symmetric.

   Transitive : For (a,b)R(c,d)ad-bc is divisible by 5 and (c,d)R(e,f)cf-de is divisible by 5

   Let ad-bc=5 k1 and cf-de=5 k2, where k1 and k2 are integers.

   adf-bcf=5k1f                                     ...(i)

   and cfb-deb=5k2b                                ...(ii)

   Solving (i) and (ii), we get

   adf-bcf+cfb-deb=5k1f+5k2b

   adf-deb=5(k1f+k2b)d(af-be)=5(k1f+k2b)

   af-be is not divisible by 5 for  a,b,c,d,e,fZ

  So, R is not transitive.

    R is Reflexive and symmetric but not transitive.



Q 24 :    

If R is the smallest equivalence relation on the set {1, 2, 3, 4} such that {(1,2),(1,3)}R, then the number of elements in R is _______ .             [2024]

  • 12

     

  • 15

     

  • 10

     

  • 8

     

(C)

   To make R an equivalence relation, R should be reflexive, symmetric, and transitive.

    R = {(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,3), (3,1), (3,2), (2,3)}

   So, minimum number of elements in R should be 10.

 



Q 25 :    

Let A = {2, 3, 6, 7} and B = {4, 5, 6, 8}. Let R be a relation defined on A×B by (a1,b1)R(a2,b2) if and only if a1+a2=b1+b2. Then the number of elements in R is ______________.       [2024]



(25)

Given, A={2, 3, 6, 7} and B={4, 5, 6, 8} 

(a1,b1)R(a2,b2)a1+a2=b1+b2

(2,4)R(6,4)(3,6)R(7,4)(2,4)R(7,5)(3,5)R(7,5)(2,5)R(7,4)(6,5)R(7,8)(3,4)R(6,5)(6,8)R(7,5)(3,5)R(6,4)(7,6)R(7,8)(3,4)R(7,6)(6,4)R(6,8)(6,6)R(6,6)]×2

Hence, total number of elements = 13×2-1=25



Q 26 :    

Let A = {1, 2, 3,…,20}. Let R1 and R2 be two relation on A such that R1 = {(a, b) : b is divisible by a} R2 = {(a, b) : a is an integral multiple of b} Then, number of elements in R1-R2 is equal to _______ .                [2024]



(46)

R1= {(1, 1), (1, 2)…(1, 20), (2, 2), (2, 4),…(2, 20), (3, 3), (3, 6)…(3, 18), (4, 4), (4, 8),…(4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7, 7), (7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (16, 16), (17, 17), (18, 18), (19, 19), (20, 20)}

R2= {(20, 1), (20, 2), (20, 4), (20, 5), (20, 10), (20, 20), (19, 19), (19, 1), (18, 1), (18, 2), (18, 3), (18, 6), (18, 9), (18, 18), (17, 1), (17, 17), (16, 1), (16, 2), (16, 4), (16, 8), (16, 16), (15, 1), (15, 3), (15, 5), (15, 15), (14, 1), (14, 2), (14, 7), (14, 14), (13, 1), (13, 13), (12, 1), (12, 2), (12, 3), (12, 4), (12, 6), (12, 12), (11, 1), (11, 11), (10, 1), (10, 2), (10, 5), (10, 10), (9, 1), (9, 3), (9, 9), (8, 1), (8, 2), (8, 4), (8, 8), (7, 1), (7, 7), (6, 1), (6, 2), (6, 3), (6, 6), (5, 1), (5, 5), (4, 1), (4, 2), (4, 4), (3, 1), (3, 3), (2, 1), (2, 2), (1, 1)}

R1R2 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (16, 16), (17, 17), (18, 18), (19, 19), (20, 20)}

Number of elements in R1-R2=66-20=46 elements.

 



Q 27 :    

The number of symmetric relations defined on the set {1, 2, 3, 4} which are not reflexive is _______.    [2024]



(960)

Let A = {1, 2, 3, 4}

n(A)=4

  Number of reflexive and symmetric relation =2n2-n2=26

Number of symmetric relations =2n(n+1)2=210

 Number of relations which is symmetric but not reflexive =210-26=1024-64=960

 



Q 28 :    

Let A = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (1, 4)} be a relation on A. Let S be the equivalence relation on A such that RS and the number of elements in S is n. Then, the minimum value of n is ________.         [2024]



(16)

Given A = {1, 2, 3, 4}

R = {(1, 2), (2, 3), (1, 4)}

S to be equivalence, it should be reflexive, symmetric and transitive.

For reflexive add (1, 1), (2, 2), (3, 3), (4, 4).

For symmetric add (2, 1), (3, 2), (4, 1).

For transitive (1, 2), (2, 3)  (1, 3), so add (1, 3) also add (3, 1) for symmetric

and (4, 1), (1, 2)  (4, 2), so add (4, 2) also add (2, 4) for symmetric.

∴ S = {(1, 2), (2, 3), (1, 4), (1, 1), (2, 2), (3, 3), (4, 4), (2, 1), (3, 2), (4, 1), (3, 1), (1, 3), (2, 4), (4, 2), (3, 4), (4, 3)}

∴ n(S) = 16



Q 29 :    

Let A = {1, 2, 3, ..........., 100}. Let R be a relation on A defined by (x, y) ∈ R if and only if 2x = 3y. Let R1 be a symmetric relation on A such that RR1 and the number of elements in R1 is n. Then, the minimum value of n is ______.            [2024]

 



(66)

We have, A = {1, 2, 3, ..., 100}

R = {(3, 2), (6, 4), (9, 6), (12, 8), ....(99, 66)}

n(R) = 33

Since, R1 is symmetric and RR1

∴ n(R1) = 66