Q 1 :    

The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + ... is                      [2023]

  • 3450 

     

  • 3420

     

  • 3520 

     

  • 3250

     

(3)

Let S=5+11+19+29++Tn 

S=5+11+19++Tn-1+Tn

Subtracting above two equations, we get: 

0=5+{6+8+10+12++(n-1) terms}-Tn 

Tn=5+2(3+4+5+ upto (n-1) terms) 

=5+2(1+2+3+ upto (n+1) terms-1-2) 

Tn=5+2·(n+1)(n+2)2-6=n2+3n+2-1 

Tn=n2+3n+1      Sn=n2+3n+1 

n(n+1)(2n+1)6+3(n+1)n2+n

S20=20×21×416+3×20×212+20=3520 



Q 2 :    

If gcd (m, n) = 1 and 12-22+32-42+...+(2021)2-(2022)2+(2023)2=1012 m2n, then m2-n2 is equal to             [2023]

  • 200 

     

  • 180 

     

  • 220   

     

  • 240

     

(4)

We have,  (12-22)+(32-42)++((2021)2-(2022)2)+(2023)2=1012m2n 

{-3-7-11--4043}It is an A.P.+(2023)2=1012m2n  

Now,  -4043=-3+(n-1)(-4)n=1011

So,  -(3+7++4043)+(2023)2=1012m2n 

-10112[3+4043]+(2023)2=1012m2n 

-2023×1011+(2023)2=1012m2n 

2023(2023-1011)=1012m2n 

2023×1012=1012m2nm2n=2023=7×172 

m=17 and n=7

   m2-n2=172-72=289-49=240



Q 3 :    

If Sn=4+11+21+34+50+... to n terms, then 160(S29-S9) is equal to             [2023]

  • 223

     

  • 220

     

  • 226 

     

  • 227

     

(1)

Given, Sn=4+11+21+34+ up to n terms  (i) 

Also, Sn=4+11+21++ up to n terms  (ii)

Subtracting (ii) from (i), we get: 

0=[4+7+10+13++]-an 

 an=n2[2(4)+(n-1)(3)]=n2[3n+5]=3n2+5n2

Now, Sn=an=32n2+52n 

=32n·(n+1)(2n+1)6+52n(n+1)2=n(n+1)4[(2n+1)+5]  

=n(n+1)(2n+6)4=n(n+1)(n+3)2

Now, 160[S29-S9]=160[(29)(30)(32)2-(9)(10)(12)2] 

=160[13920-540]=1338060=223



Q 4 :    

Let S1,S2,S3, ............ S10 respectively be the sum to 12 terms of 10 A.P. whose first terms are 1, 2, 3, ....... 10 and the common difference are 1, 3, 5, .........., 19 respectively. Then i=110Si is equal to             [2023]

  • 7220

     

  • 7380 

     

  • 7260 

     

  • 7360

     

(3)

s1=1+2+3++12  (i) 

s2=2+5+8+ up to 12 terms  (ii) 

s3=3+8+13+ up to 12 terms  (iii) 

  s10=10+29+48+ up to 12 terms  (iv)

From (i),  s1=12(13)2=78 

From (ii),  s2=122[2(2)+11×3]=6[4+33]=222 

From (iii),  s3=122[2(3)+11×5]=6[6+55]=366

From (iv),  s10=122[2(10)+11×19]=6[20+209]=1374

Thus, sk=6[2k+11(2k-1)]=6(2k+22k-11)=144k-66

  k=110sk=144k=110k-66k=1101=144(10×112)-66(10) 

= 7920-660=7260



Q 5 :    

If an=-24n2-16n+15, then a1+a2+...+a25 is equal to             [2023]

  • 52/147

     

  • 50/141

     

  • 51/144

     

  • 49/138

     

(2)

an=-24n2-16n+15=-2(2n-3)(2n-5) 

an=12n-3-12n-5

For n=1,  a1=-1+13;n=2,a2=1+1;n=3,a3=13-1

n=4,  a4=15-13; n=5,a5=17-15

n=25,  a25=147-145

Now, a1+a2+a3+a4+a5++a25 

=(-1+13)+(1+1)+(13-1)+(15-13)+(17-15)++(147-145)

=-1+13+2-1+147=50141 



Q 6 :    

Let a1,a2,a3,.... be an A.P. If a7=3, the product a1a4 is minimum and the sum of its first n terms is zero, then n!-4an(n+2) is equal to          [2023]

  • 381/4

     

  • 9

     

  • 33/4 

     

  • 24

     

(4)

Given, a7=3 

a+6d=3  (1)

Let Z=a1a4=a(a+3d)=(a+6d-6d)(a+6d-3d) 

=(3-6d)(3-3d)=18d2-27d+9

Differentiating with respect to d,

36d-27=0d=34 From (1),   a=-32  (Z is minimum)

Now, Sn=n2[2a+(n-1)d]=n2[-3+(n-1)34]=0  

n(3n-15)=0n=5

Now, n!-4an(n+2)=5!-4a35=120-4(a35)

=120-4a+(35-1)d=120-4(-32+34(34)) 

=120-4(-6+1024)=120-96=24



Q 7 :    

The sum of all those terms, of the arithmetic progression 3, 8, 13,..., 373, which are not divisible by 3, is equal to __________ .            [2023]



(9525)

The given A.P. is  3,8,13,,373 

Tn=a+(n-1)d

373=3+(n-1)5n=75

Sn=752[3+373]=14100 

Numbers which are divisible by 3 are  3,18,,363. 

T'n=3+(n'-1)15

363=3+15n'-1515n'=375n'=25

S'n=252[3+363]=4575 

  Required sum=14100-4575=9525



Q 8 :    

Let the digits a, b, c be in A.P. Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in A.P. at least once. How many such numbers can be formed?           [2023]



(1260)

There are only two ways to write digits a,b,c be in A.P.

                            Ista b c=C12IIndc b a

                           -------------------------------------

Here, 9 places to put a b c or b c a but there will be only 7 possible ways A.P. to choose three consecutive numbers are i.e. 

123,234,345,456,567,678,789=C17

Now, we have left only 6 places where a, b, c are three such that three consecutive digits are in A.P.

6!2!2!2!

Required number =C12·C17·6!2!2!2!

=2×7×6×5×4×3×22×2×2=1260



Q 9 :    

Let a1=8,a2,a3,...,an be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is _________ .        [2023]



(754)

Sum of first four terms =42[16+3d]

50=32+6dd=3

Now, sum of last four terms = 170

42[2(8+(n-4)d)+3d]=170             [ last four terms are an-3,an-2,an-1,an]

2[2(8+(n-4)·3)+9]=170

16+6(n-4)+9=85

6(n-4)=60n-4=10n=14

  Middle terms are 7th term and 8th term.

  T7=8+6d=8+18=26,   T8=8+7d=8+21=29

Now, T7×T8=26×29=754



Q 10 :    

The sum of the common terms of the following three arithmetic progressions. 3, 7, 11, 15, .., 399,

2, 5, 8, 11, ..., 359 and 2, 7, 12, 17, ..., 197, is equal to ________ .                 [2023]



(321)

3,7,11,15,,399 are in A.P.

So, common difference d1=7-3=4

2,5,8,11,,359 are in A.P.

Then, d2=5-2=3;  2,7,12,17,,197 are in A.P.

d3=7-2=5

L.C.M. of d1,d2,d3=L.C.M. of (4,3,5)=60

On expanding all A.P.s, common terms are 47,107,167

   Sum=47+107+167=321