Q 1 :    

For x0, the least value of K, for which 41+x+41-x,K2,16x+16-x are three consecutive terms of an A.P., is equal to:             [2024]

  • 4

     

  • 10

     

  • 8

     

  • 16

     

(B)

We have, 41+x+41-x,K2,16x+16-x are in A.P.

2K2=(41+x+41-x)+(16x+16-x)

K=4·4x+44x+42x+142x

          =4(4x+14x)+(42x+142x)  4·2+2                                     [A.M.G.M.]

          =10K10

So, least value of K is 10 

 



Q 2 :    

A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to:                 [2024]

  • 160

     

  • 180

     

  • 150

     

  • 125

     

(C)

Let the work done by each computer =k

   Total work =17 mk

Work done on 1 day by m computers =mk

Work done on day 2 by m-4computers =(m-4)k

Work done on day 3 by m-8 computers =(m-8)k

Work done on day 25 =(m-(24×4))k

                                       =(m-96)k

     mk+(m-4)k++(m-96)k=17mk

25m-(4+8++96)=17m

8m=242(4+96)m=150



Q 3 :    

Let Sn denote the sum of the first n terms of an arithmetic progression. If S10=390 and the ratio of the tenth and the fifth terms is 15 : 7, then S15-S5 is equal to:            [2024]

  • 800

     

  • 890

     

  • 790

     

  • 690

     

(C)

We have, S10=390

5(2a+9d)=3902a+9d=78                ...(i)

Also, a10a5=157a+9da+4d=157

7a+63d=15a+60d8a=3d

a=38d                                                                    ...(ii)

From (i) & (ii), we get d=8 and a=3

Now, S15-S5=152[6+112]-52[6+32]=790

 



Q 4 :    

The number of common terms in the progressions
4, 9, 14, 19, ........…, up to 25th term and 3, 6, 9, 12, ....…, up to 37th term is:                [2024]

  • 8

     

  • 7

     

  • 5

     

  • 9

     

(B)

4, 9, 14, 19, ... are in A.P. with  d1=5, n1=25

3, 6, 9, 12, ... are in A.P. with d2=3, n2=37

L.C.M. (d1,d2)=15

Common terms = 9, 24, 39, 54, 69, 84, 99

 



Q 5 :    

The 20th term from the end of the progression 20,1914,1812,1734,,-12914 is:              [2024]

  • -118

     

  • -100

     

  • -110

     

  • -115

     

(D)

Given, 20,1914,1812,1734,,-12914 is in A.P. with first term (a)=-12914

Common difference (d)=20-1914=80-774=34

20th term from the end =a20=a+(20-1)d

=-12914+19×34=-5174+574=-4604=-115

    a20=-115

 



Q 6 :    

In an A.P., the sixth term a6=2. If the product a1a4a5 is the greatest, then the common difference of the A.P. is equal to            [2024]

  • 85

     

  • 58

     

  • 32

     

  • 23

     

(A)

We have, a6=2a+5d=2d=2-a5

Let a1a4a5=λ

λ=a(a+3d)(a+4d)=a(a2+7ad+12d2)=a3+7a2d+12ad2

=a3+7a2(2-a5)+12a(2-a5)2          [d=2-a5]

=a3+145a2-75a3+12a25(4-4a+a2)

=a3+145a2-75a3+4825a-4825a2+1225a3

=225a3+2225a2+4825a=225(a3+11a2+24a)

    dλda=225(3a2+22a+24)

λ to be greatest

     dλda=03a2+22a+24=0a=-6,-43

d2λda2=225(6a+22),For a=-6,d2λda2<0

So, λ is maximum

For a=-43,d2λda2>0,λ is minimum        d=2-(-6)5=85

 



Q 7 :    

If logea,logeb,logec are in an A.P. and logea-loge2b,loge2b-loge3c,loge3c-logea are also in an A.P., then a:b:c is equal to                     [2024]

  • 16 : 4 : 1

     

  • 9 : 6 : 4

     

  • 6 : 3 : 2

     

  • 25 : 10 : 4

     

(B)

We have, logea,logeb,logec are in an A.P.

2logeb=logea+logecb2=ac                    ...(i)

Also, logea-loge2b, loge2b-loge3c, loge3c-logea are in an A.P.

2(loge2b-loge3c)=logea-loge2b+loge3c-logea

loge(2b3c)2=loge(3c2b)4b29c2=3c2b

4b29c2=3c2b                                                                            ...(ii)

From (i) and (ii), we have

a=9c24ca=94c     a:b:c=94:32:1=9:6:4



Q 8 :    

Let Sn denote the sum of first n terms of an arithmetic progression. If S20=790 and S10=145, then S15-S5 is              [2024]

  • 390

     

  • 405

     

  • 410

     

  • 395

     

(D)

Given, S20=790

202(2a+19d)=7902a+19d=79                  ...(i)

Given, S10=145

102(2a+9d)=1452a+9d=29                             ...(ii)

From (i) and (ii), we get 10d=50d=5

From (i), we get a=79-952=-8

So, S15-S5=152[-16+70]-52[-16+20]=395



Q 9 :    

Let a1,a2,a3, be in an arithmetic progression of positive terms.

 

Let Ak=a12-a22+a32-a42++a2k-12-a2k2. 

 

If A3=-153,A5=-435 and a12+a22+a32=66, then a17-A7 is equal to _______ .               [2024]



(910)

a1,a2,a3, is an A.P.

Let d be the common difference

    a2-a1=a3-a2==a2k-a2k-1=d

Now, a12-a22+a32-a42++a2k-12-a2k2

=(a1-a2)(a1+a2)++(a2k-1-a2k)(a2k-1+a2k)

=-d[a1+a2++a2k-1+a2k]

=-d·[2k2[a1+a2k]]=-dk(a1+a2k)

   Ak=-dk(a1+a2k)

So,  A3=-3d(a1+a6)=-153

-3d(a1+a1+5d)=-153

-3d(2a1+5d)=-1532a1+5d=51d              ...(i)

Similarly A5=-435

-5d(2a1+9d)=-4352a1+9d=87d                ...(ii)

Solving (i) and (ii) we get 4d=36dd2=9d=3        [Given A.P. is a progression of positive terms]

a1=1

Now, a17=a1+16d=1+48=49

and A7=-3×7(a1+a14)

=-21(1+1+13×3)=-21(41)=-861

    a17-A7=49+861=910

 



Q 10 :    

An arithmetic progression is written in the following way

                                                  2

                                        5                    8

                             11                14                  17

                   20               23                 26               29

         --------------------------------------------------------------------

     ---------------------------------------------------------------------------

The sum of all the terms of the 10th row is ______.                    [2024]



(1505)

First term of the 10th row is 10th term of sequence 2, 5, 11, 20, 32, ...

S=2+5+11+20+32++T10

S=       2+5+11+20+32++T9+T10

On subtracting, we get

0=2+3+6+9+12+-T109 terms

T10=2+3+6+9+12+9 terms

      =2+92[6+8×3]=2+135=137

Terms in 10th row with common difference 3 are 137, 140, 143, .....

     S10=102[2×137+9×3]=5×301=1505