Q 21 :    

If logea,logeb,logec are in an A.P. and logea-loge2b,loge2b-loge3c,loge3c-logea are also in an A.P., then a:b:c is equal to                     [2024]

  • 16 : 4 : 1

     

  • 9 : 6 : 4

     

  • 6 : 3 : 2

     

  • 25 : 10 : 4

     

(2)

We have, logea,logeb,logec are in an A.P.

2logeb=logea+logecb2=ac                    ...(i)

Also, logea-loge2b, loge2b-loge3c, loge3c-logea are in an A.P.

2(loge2b-loge3c)=logea-loge2b+loge3c-logea

loge(2b3c)2=loge(3c2b)4b29c2=3c2b

4b29c2=3c2b                                                                            ...(ii)

From (i) and (ii), we have

a=9c24ca=94c     a:b:c=94:32:1=9:6:4



Q 22 :    

Let Sn denote the sum of first n terms of an arithmetic progression. If S20=790 and S10=145, then S15-S5 is              [2024]

  • 390

     

  • 405

     

  • 410

     

  • 395

     

(4)

Given, S20=790

202(2a+19d)=7902a+19d=79                  ...(i)

Given, S10=145

102(2a+9d)=1452a+9d=29                             ...(ii)

From (i) and (ii), we get 10d=50d=5

From (i), we get a=79-952=-8

So, S15-S5=152[-16+70]-52[-16+20]=395



Q 23 :    

Let a1,a2,a3, be in an arithmetic progression of positive terms.

Let Ak=a12-a22+a32-a42++a2k-12-a2k2. 

If A3=-153,A5=-435 and a12+a22+a32=66, then a17-A7 is equal to _______ .               [2024]



(910)

a1,a2,a3, is an A.P.

Let d be the common difference

    a2-a1=a3-a2==a2k-a2k-1=d

Now, a12-a22+a32-a42++a2k-12-a2k2

=(a1-a2)(a1+a2)++(a2k-1-a2k)(a2k-1+a2k)

=-d[a1+a2++a2k-1+a2k]

=-d·[2k2[a1+a2k]]=-dk(a1+a2k)

   Ak=-dk(a1+a2k)

So,  A3=-3d(a1+a6)=-153

-3d(a1+a1+5d)=-153

-3d(2a1+5d)=-1532a1+5d=51d              ...(i)

Similarly A5=-435

-5d(2a1+9d)=-4352a1+9d=87d                ...(ii)

Solving (i) and (ii) we get 4d=36dd2=9d=3        [Given A.P. is a progression of positive terms]

a1=1

Now, a17=a1+16d=1+48=49

and A7=-3×7(a1+a14)

=-21(1+1+13×3)=-21(41)=-861

    a17-A7=49+861=910

 



Q 24 :    

An arithmetic progression is written in the following way

                                             2

                                   5                    8

                        11                14                  17

              20               23                 26               29

         --------------------------------------------------------------------

     ---------------------------------------------------------------------------

The sum of all the terms of the 10th row is ______.                    [2024]



(1505)

First term of the 10th row is 10th term of sequence 2, 5, 11, 20, 32, ...

S=2+5+11+20+32++T10

S=       2+5+11+20+32++T9+T10

On subtracting, we get

0=2+3+6+9+12+-T109 terms

T10=2+3+6+9+12+9 terms

      =2+92[6+8×3]=2+135=137

Terms in 10th row with common difference 3 are 137, 140, 143, .....

     S10=102[2×137+9×3]=5×301=1505



Q 25 :    

Let 3, 7, 11, 15, ...., 403 and 2, 5, 8, 11, ....., 404 be two arithmetic progressions. Then the sum of the common terms in them, is equal to _____.     [2024]



(6699)

A.P. : 3, 7, 11, 15, ....., 403

d1=4

A.P. : 2, 5, 8, 11, ....., 404

d2=3

L.C.M. (d1,d2)=12

Common terms = 11, 23, 35 ... 395

a=11,d=12,an=395

an=a+(n-1)d395=11+(n-1)(12)

38412=(n-1)n=33

S=332(11+395)=332(406)=6699



Q 26 :    

Let a1,a2,a3, ..... be in an A.P. such that k=112a2k1=725a1,a10. If k=1nak=0, then n is :          [2025]

  • 17

     

  • 18

     

  • 10

     

  • 11

     

(4)

Let First term, a1=a, common difference = d

Given, k=112a2k1=725a, a10

 a1+a3+a5+....+a23=725a

 a+(a+2d)+(a+4d)+....+(a+22d)=725a

Now, k=112a2k-1 is an AP with common difference as 2d.

  122[2a+11×2d]=725a

 12a+132d=725a

 132a+132×5d=0

 a=5d

Also, given k=1nak=0  n2[2a+(n1)d]=0

 n(10d+ndd)=0  nd(n11)=0  n=11.



Q 27 :    

The number of terms of an A.P. is even; the sum of all the odd terms is 24, the sum of all the even terms is 30 and the last term exceeds the first by 212. Then the number of terms which are integers in the A.P. is :          [2025]

  • 10

     

  • 8

     

  • 4

     

  • 6

     

(2)

Let n be the number of terms of an A.P., a be the first term and d be the common difference.

Let n = 2m, so terms are a, a + d, a + 2d, a + (2m – 1)d

Odd terms = a, a + 2d, a + 4d, ...., a + (2m – 2)d

Even terms = a + d, a + 3d, a + 5d, .... a + (2m – 1)d

Now, SevenSodd = (a + da) + (a + 3da – 2d) + .... + (a + (2m – 1)da – (2m – 2)d)

 3024=md  md=6          ... (i)

Now, a+(2m1)da=212  2mdd=212

 12d=212  d=12212=32          [From (i)]

Since, md=6  m×32=6  m=4

Now, n=2m=2×4=8

So, number of terms = 8.

 



Q 28 :    

The sum 1 + 3 + 11 + 25 + 45 + 71 + ... up to 20 terms, is equal to          [2025]

  • 7240

     

  • 8124

     

  • 7130

     

  • 6982

     

(1)

Let Sn = 1 + 3 + 11 + 25 + 45 + 71 + ... + Tn

Here, series of differences i.e., (3 – 1), (11 – 3), (25 – 11) ..... i.e., 2, 8, 14, .... is in A.P.

If the second order differences of a square are in A.P. then general term is given by

             Tn=an2+bn+c

Put n = 1, 2, 3, we get

T1 = 1 = a + b + c          ... (i)

T2 = 3 = 4a + 2b + c          ... (ii)

T3 = 11 = 9a + 3b + c          ... (iii)

On solving equation (i), (ii) and (iii), we get the general term of given series as

             Tn=3n27n+5

Hence, n=120(3n27n+5)

              =3(20·21·416)7(20·212)+5(20)=7240.



Q 29 :    

Let A = {1, 6, 11, 16, ...} and B = {9, 16, 23, 30, ...} be the sets consisting of the first 2025 terms of two arithmetic progressions. Then n(AB) is          [2025]

  • 4027

     

  • 3761

     

  • 4003

     

  • 3814

     

(2)

Given A = {1, 6, 11, 16, ...}, B = {9, 16, 23, 30, ...} are two A.P. and n(A) = 2025, n(B) = 2025

2025th term of set A=1+2024×5=10121

2025th term of set B=9+2024×7=14177

 A = {1, 6, 11, 16, ..., 10121} and B = {9, 16, 23, ...,14177}

Now AB = 16, 51, 86, .... which is an A.P. with a = 16, d = 35

then number of terms in (AB) = 16 + (n – 1) 35 < 10121

 n – 1 < 288.7

 n < 289.7

 n = 289              [ n is natural number]

 n(AB)=n(A)+n(B)n(AB)

                          = 2025 + 2025 – 289 = 3761.



Q 30 :    

Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and q respectively. Let d and D be the common differences of AP's in A and B respectively such that D = d + 3, d > 0. If p+qpq=195, then p – q is equal to          [2025]

  • 450

     

  • 630

     

  • 540

     

  • 600

     

(3)

Let A = (ad, a, a + d) and B = (bD, b, b + D)

For set A, Sum = 36, product = p

For set B, Sum = 36, product = q

 a=12, p=12(144d2)

 b=12, q=12(144D2)

      =12(144(d+3)2)=12(144d26d9)

Now, p+qpq=195  pq=127

 144d2144d26d9=127

 5d2+72d612=0

 d=72±(132)210

 d=6 and D=9          [ d>0]

  pq=12(D2d2)=12(9262)=540.