Q 11 :    

Let 3, 7, 11, 15, ...., 403 and 2, 5, 8, 11, ....., 404 be two arithmetic progressions. Then the sum of the common terms in them, is equal to _____.     [2024]



(6699)

A.P. : 3, 7, 11, 15, ....., 403

d1=4

A.P. : 2, 5, 8, 11, ....., 404

d2=3

L.C.M. (d1,d2)=12

Common terms = 11, 23, 35 ... 395

a=11,d=12,an=395

an=a+(n-1)d395=11+(n-1)(12)

38412=(n-1)n=33

S=332(11+395)=332(406)=6699



Q 12 :    

Let a1, a2, a3, ..... be in an A.P. such that k=112a2k1=725a1, a10. If k=1nak=0, then n is :          [2025]

  • 17

     

  • 18

     

  • 10

     

  • 11

     

(4)

Let First term, a1=a, common difference = d

Given, k=112a2k1=725a1, a10

 a1+a3+a5+....+a23=725a

 a+(a+2d)+(a+4d)+....+(a+22d)=725a

Now,  is an AP with common difference as 2d.

  122[2a×11×2d]=725a

 12a+132d=725a

 132a+132×5d=0

 a=5d

Also, given k=1nak=0  n2[2a+(n1)d]=0

 n(10d+ndd)=0  nd(n11)=0  n=11.



Q 13 :    

The number of terms of an A.P. is even; the sum of all the odd terms is 24, the sum of all the even terms is 30 and the last term exceeds the first by 212. Then the number of terms which are integers in the A.P. is :          [2025]

  • 10

     

  • 8

     

  • 4

     

  • 6

     

(2)

Let n be the number of terms of an A.P., a be the first term and d be the common difference.

Let n = 2m, so terms are a, a + d, a + 2d, a + (2m – 1)d

Odd terms = a, a + 2d, a + 4d, ...., a + (2m – 2)d

Even terms = a + d, a + 3d, a + 5d, .... a + (2m – 1)d

Now, SevenSodd = (a + da) + (a + 3da – 2d) + .... + (a + (2m – 1)da – (2m – 2)d)

 3024=md  md=6          ... (i)

Now, a+(2m1)da=212  2mdd=212

 12 d=212  d=12212=32          [From (i)]

Since, md=6  m×32=6  m=4

Now, n=2m=2×4=8

So, number of terms = 8.

 



Q 14 :    

The sum 1 + 3 + 11 + 25 + 45 + 71 + ... up to20 terms, is equal to          [2025]

  • 7240

     

  • 8124

     

  • 7130

     

  • 6982

     

(1)

Let Sn = 1 + 3 + 11 + 25 + 45 + 71 + ... + Tn

Here, series of differences i.e., (3 – 1), (11 – 3), (25 – 11) ..... i.e., 2, 8, 14, .... is in A.P.

If the second order differences of a square are in A.P. then general term is given by

             Tn=an2+bm+c

Put n = 1 + 2 + 3

T1 = 1 = a + b + c          ... (i)

T2 = 3 4a + 2b + c          ... (ii)

T3 = 11 = 9a + 3b + c          ... (iii)

On solving equation (i), (ii) and (iii), we get the general term of given series as

             Tn=3n27n+5

Hence, n=120(3n27n+5)

              =3(20·21·416)7(20·212)+5(20)=7240.



Q 15 :    

Let A = {1, 6, 11, 16, ...} and B = {9, 16, 23, 30, ...} be the sets consisting of the first 2025 terms of two arithmetic progressions. Then (AB) is          [2025]

  • 4027

     

  • 3761

     

  • 4003

     

  • 3814

     

(2)

Given A = {1, 6, 11, 16, ...}, B = {9, 16, 23, 30, ...} are two A.P. and n(A) = 2025, n(B) = 2025

2025th term of set A=1+2024×5=10121

2025th term of set B=9+2024×7=14177

 A = {1, 6, 11, 16, ..., 10121} and B = {9, 16, 23, ...,14177}

Now AB = 16, 51, 86, .... which is an A.P. with a = 16, d = 15

then number of terms in (AB) = 16 + (n – 1) 35 < 10121

 n – 1 < 288.7

 n < 289.7

 n = 289              [ n is natural number]

 n(AB)=n(A)+n(B)n(AB)

                          = 2025 + 2025 – 289 = 3761.



Q 16 :    

Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and q respectively. Let d and D be the common differences of AP's in A and B respectively such that D = d + 3, d > 0. If p+qpq=195, then p – q is equal to          [2025]

  • 450

     

  • 630

     

  • 540

     

  • 600

     

(3)

Let A = (ad, a, a + d) and B = (bD, b, b + D)

For set A, Sum = 36, product = p

For set B, Sum = 36, product = q

 a=12, p=12(144d2)

 b=12, q=12(144D2)

      =12(144(d+3)2)=12(144d26d9)

Now, p+qpq=195  pq=127

 144d2144d26d9=127

 5d2+72d612=0

 d=72±(132)210

 d=6 and D=9          [ d>0]

  pq=12(D2d2)=12(9262)=540.



Q 17 :    

Let an be the nth term an A.P. If Sn=a1+a2+a3+...+an=700, a6=7 and S7=7, then an is equal to          [2025]

  • 65

     

  • 70

     

  • 56

     

  • 64

     

(4)

We have, Sn=a1+a2+a3+...+an=700, a6=7 and S7=7

Now, a6=7  a+5d=7          ... (i)

S7=7  72(2a+6d)=7

 a+3d=1          ... (ii)

On solving (i) and (ii), we get

                d = 3 and a = – 8

So, 700=n2[16+(n1)3]           [ Sn=n2[2a+(n1)d]]

1400=16n+3n23n

 3n219n1400=0

 (3n+56)(n25)=0  n=25

  a25=a+24d=824×3=64.



Q 18 :    

Suppose that the number of terms in an A.P. is 2k, kN. If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then k is equal to :          [2025]

  • 6

     

  • 4

     

  • 5

     

  • 8

     

(3)

Let the A.P. be a1,a2,a3...a2k

Given, r=1ka2r1=40, r=1ka2r=55 and a2ka1=27

 k2[2a1+(k1)2d]=40          ... (i)

and k2[2a2+(k1)2d]=55          ... (ii)

and a1+(2k1)da1=27          ... (iii)

After solving, we get

From (i), a1=40k(k1)d

From (ii), a2=55k(k1)d

and from (iii), d=272k1

(ii) –(i)

 d=15k  272k1=15k  9k=10k5

   k = 5.



Q 19 :    

If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to          [2025]

  • –120

     

  • –1200

     

  • –1020

     

  • –1080

     

(4)

Let first term be 'a' and common difference be 'd'.

Also, S4=15(S8S4)

 5S4=S8S4  S8=6S4

 82[2×3+7×d]=6×42[2×3+3×d]          [ a=3]

 6+7d=18+9d  2d=12  d=6

  S20=202[2×3+(19)×6]

                = 10[– 108] = – 1080.



Q 20 :    

In an arithmetic progression, if S40=1030 and S12=57, then S30S10 is equal to :          [2025]

  • 505

     

  • 525

     

  • 510

     

  • 515

     

(4)

Given S40=1030 and S12=57

Let a be the first term and d be the common difference. We have,

S40=402[2a+39d]=100;S12=122[2a+11d]=57

On simplifying, we get

2a+39d=1032          ... (i)

2a+11d=192           ... (ii)

Subtracting (ii) from (i), we get

28d=42  a=32

Using equation (ii), we get

2a+11×32=192  a=72

Now, we have

S30S10=302[2a+29d]102[2a+9d]

              .         =20a+390d=20×(72)+390×32=515.