Q 11 :    

The sum of the squares of the roots of |x2|2+|x2|2=0 and the squares of the roots of x22|x3|5=0 is          [2025]

  • 24

     

  • 36

     

  • 30

     

  • 26

     

(2)

We have, |x2|2+|x2|2=0

 |x2|2+2|x2||x2|2=0

 (|x2|+2)(|x2|1)=0

 |(x2)|=1          [  |x2|2]

 x=2±1  x=3,1

Sum of square of roots = 9 + 1 = 10

Now, we have x22|x3|5=0

Case I : When x – 3 > 0

 x22x+1=0  (x1)2=0  x=1

but x > 3  x1

Case II : When x – 3 < 0

 x2+2x11=0

Discriminant, D = 4 + 44 = 48 > 0

x = 2±482=2±432=1±23

SInce, i < 3, so both roots are valid.

Sum of squares of roots = (1+23)2+(123)2

     =1+1243+1+12+43=26

   Required sum = 10 + 26 = 36.



Q 12 :    

If the set of all aR{1}, for which the roots of the equation (1a)x2+2(a3)x+9=0 are positive is (,α][β,γ), then 2α+β+γ is equal to __________.          [2025]



7

Let x1 and x2 be the roots of (1a)2+2(a3)x+9=0.

Since, x1x2>0

  x1+x2>0 and x1x2>0

 2(a3)1a>0  a31a<0

 a(,1)(3,)

Also, x1x2>0  91a>0  1a>0  a<1

On combining both conditions, we get a(,1)

Now, for real roots, discriminaqnt must be non negative.

i.e., (2(a3))24(1a)90

 4(a26a+9)36+36a0

 4a224a+3636+36a0

 4a2+12a0  a(a+3)0

 a(,3][0,1)

Combining all the conditions, we get a(,3][0,1)

  α=3, β=0 and γ=1

  2α+β+γ=2×3+0+1=7