Q 11 :    

The sum of the squares of the roots of |x2|2+|x2|2=0 and the squares of the roots of x22|x3|5=0 is          [2025]

  • 24

     

  • 36

     

  • 30

     

  • 26

     

(2)

We have, |x2|2+|x2|2=0

 |x2|2+2|x2||x2|2=0

 (|x2|+2)(|x2|1)=0

 |(x2)|=1          [  |x2|2]

 x=2±1  x=3,1

Sum of square of roots = 9 + 1 = 10

Now, we have x22|x3|5=0

Case I : When x – 3 > 0

 x22x+1=0  (x1)2=0  x=1

but x > 3  x1

Case II : When x – 3 < 0

 x2+2x11=0

Discriminant, D = 4 + 44 = 48 > 0

x = 2±482=2±432=1±23

SInce, x < 3, so both roots are valid.

Sum of squares of roots = (1+23)2+(123)2

     =1+1243+1+12+43=26

   Required sum = 10 + 26 = 36.



Q 12 :    

If the set of all aR{1}, for which the roots of the equation (1a)x2+2(a3)x+9=0 are positive is (,α][β,γ), then 2α+β+γ is equal to __________.          [2025]



(7)

Let x1 and x2 be the roots of (1a)x2+2(a3)x+9=0.

Since, x1,x2>0

  x1+x2>0 and x1x2>0

 2(a3)1a>0  a31a<0

 a(,1)(3,)

Also, x1x2>0  91a>0  1a>0  a<1

On combining both conditions, we get a(,1)

Now, for real roots, discriminant must be non negative.

i.e., (2(a3))24(1a)90

 4(a26a+9)36+36a0

 4a224a+3636+36a0

 4a2+12a0  a(a+3)0

 a(,3][0,)

Combining all the conditions, we get a(,3][0,1)

  α=3, β=0 and γ=1

  2α+β+γ=2×3+0+1=7



Q 13 :    

The set of all a for which the equation x|x-1|+|x+2|+a=0 has exactly one real root, is          [2023]

  • (-,)

     

  • (-6,)

     

  • (-,-3)

     

  • (-6,-3)

     

(1)

Let f(x)=x|x-1|+|x+2|

Given, x|x-1|+|x+2|+a=0

 f(x)+a=0-a=f(x)

f(x)={-x2-2,-<x<-2 -x2+2x+2,-2x<1x2+2,1x<

[IMAGE 15]

All values are increasing.

 



Q 14 :    

The number of real roots of the equation x|x|-5|x+2|+6=0, is             [2023]

  • 5

     

  • 3

     

  • 4

     

  • 6

     

(2)

We have, x|x|-5|x+2|+6=0

Case I: x-2

 -x2+5x+10+6=0

-x2+5x+16=0x2-5x-16=0

x=5±(-5)2+16×42=5±25+642=5±892

Only x=5-892 belongs to (-,-2]

So, one solution exists in this case.

Case II: -2<x0

-x2-5x-10+6=0

-x2-5x-4=0x2+5x+4=0

(x+1)(x+4)=0x=-1 or x=-4

Since -2<x0, x=-4 is not a solution. 

So, x=-1 is a solution in this case.

Case III: x>0

x2-5x-4=0x=5±25+162=5±412

But x>0. So, x=5+412 is the only solution in this case.

Therefore, the equation has three solutions.



Q 15 :    

The number of integral values of k, for which one root of the equation 2x2-8x+k=0 lies in the interval (1, 2) and its other root lies in the interval (2, 3), is      [2023]

  • 2

     

  • 0

     

  • 1

     

  • 3

     

(3)

2x2-8x+k=0 represents an upward parabola.

f(1)·f(2)<0  and  f(2)·f(3)<0

(2(1)2-8(1)+k)·(2(2)2-8(2)+k)<0

[IMAGE 16]

and  (2(2)2-8(2)+k)(2(3)2-8(3)+k)<0

(k-6)(k-8)<0  and  (k-8)(k-6)<0

k(6,8)  and  k(6,8)

Integral value of k=7



Q 16 :    

Let m and n be the numbers of real roots of the quadratic equations x2-12x+[x]+31=0 and x2-5|x+2|-4=0 respectively, where [x] denotes the greatest integer x. Then m2+mn+n2 is equal to __________ .         [2023]



(9)

x2-12x+[x]+31=0 

  {x}=x2-11x+310x2-11x+31<1 

  x2-11x+30<0x(5,6) 

So,  [x]=5 

Now,  x2-12x+5+31=0 

  x2-12x+36=0x=6 but x(5,6)

m=0

Now, for  x2-5|x+2|-4=0

When

x-2;                     x<-2 

x2-5x-14=0;     x2+5x+6=0

(x-7)(x+2)=0;    (x+3)(x+2)=0

x=7,-2;                  x=-3,-2

Now,  x2-5|x+2|-4=0x={7,-2,-3}       n=3

So,  m2+mn+n2=9



Q 17 :    

Let S={α:log2(92α-4+13)-log2(53·32α-4+1)=2}. Then the maximum value of β for which the equation

 x2-2(αSα)2x+αS(α+1)2β=0 has real roots, is ________ .               [2023]



(25)

Given log2(92α-4+13)-log2(52·32α-4+1)=2 
 
log2(92α-4+1352·32α-4+1)=292α-4+1352·32α-4+1=4 

  92α-4+13=10·32α-4+410·32α-4-92α-4=9  

Put α=1,  10·3-2-9-2=109-181=89819 (not satisfy)

Put α=2,  10·30-90=10-1=9 (satisfy) 

Put α=3,  10·32-92=90-81=9 (satisfy)

Hence,  α=2 or 3.

Now,

αSα=2+3=5 and αS(α+1)2=αSα2+2αSα+αS1

=4+9+2(5)+2=25

So, x2-2(5)2x+25β=0=x2-50x+25β=0

For real roots, D0 

2500-4(25β)0100β2500β25

Hence, βmax=25