Q 21 :    

The area of the region enclosed by the parabola (y-2)2=x-1, the line x-2y+4=0 and the positive coordinate axes is ____________.       [2024]



(5)

Given, equation of parabola

(y-2)2=(x-1)                                   ...(i)

and line x-2y+4=0                           ...(ii)

From (ii), we have

x-2(y-2)=0y-2=x2

Putting in (i), we get (x2)2=(x-1)

x2-4x+4=0

(x-2)2=0x=2

From (ii), we have, y=3

     Intersection point of (i) and (ii) is (2,3).

   Required area=03((y-2)2+1)dy-Area of triangle

                                    =03(y2-4y+5)dy-12×2×1

=[y33-2y2+5y]03-1=(9-18+15)-1=6-1=5 sq. units



Q 22 :    

The area of the region {(x,y):|xy|y4x} is          [2025]

  • 512

     

  • 20483

     

  • 10243

     

  • 5123

     

(3)

We have, |xy|y4x

Now, y=|xy| y2=(xy)2

 y=x2 and x=0

Required Area =064(4xx2)dx

=[4x3/23/2x24]064=83·836424=642(112)=10243.



Q 23 :    

Let f:[0,)R be a differentiable function such that f(x)=12x+0xextf(t)dt for all x[0,).

Then the area of the region bounded by y = f(x) and the coordinates axes is           [2025]

  • 12

     

  • 2

     

  • 5

     

  • 2

     

(1)

We have, y=12x+ex0xe-tf(t)dt

 dydx=2+ex·exf(x)+ex0xe-tf(t)dt

                 =2+y+y+2x1

 dydx2y=2x3

This is a linear differential equation, so we have

ye2x=(2x3)·e2xdx+c          [ I.F.=e2dx=e2x]

 ye2x=(2x3)2e2x+e2x·dx+c

 ye2x=(2x3)2e2xe2x2+c

  f(0)=1         c=132+12=0

 y=(2x3)212  x+y=1

So, area =12×1×1=12.



Q 24 :    

A line passing through the point A(–2, 0), touches the parabola P : y2=x2 at the point B in the first quadrant. The area, of the region bounded by the line AB, parabola P and the x-axis, is :          [2025]

  • 73

     

  • 2

     

  • 3

     

  • 83

     

(4)

Given parabola P : y2=x2 and line is passing through A(–2, 0)

Tangent is y = m(x + 2)

 (m(x+2))2=x2

 m2x2+(4m21)x+(4m2+2)=0

As D = 0

 (4m21)2=4m2(4m2+2)  m=14

So, tangent is y=14(x+2)

Point of tangency is (6, 2)

   Area of region =02(y2+2)(4y2)dy

                                        =838+8=83 sq. units.



Q 25 :    

If the area of the region bounded by the curves y=4x24 and y=x42 is equal to α, then 6α equals          [2025]

  • 240

     

  • 220

     

  • 210

     

  • 250

     

(4)

Given, y=4x24          ... (i)

and y=x42          ... (ii)

From (i) & (ii), we get

x = –6, 4 and y = –5, 0

Thus, point of intersection of (i) & (ii) are (–6, 5) and (4, 0).

Required Area =64{(4x24)(x42)}dx

α=64{x24x2+6}dx

α=x312x24+6x|64

      =(6412+21612)(164364)+6(4+6)

      =1253

  6α=250.



Q 26 :    

If the area of the region {(x,y):1+x2ymin {x+7,113x}} is A, then 3A is equal to          [2025]

  • 47

     

  • 49

     

  • 50

     

  • 46

     

(3)

A=21(x+7x21)dx+12(113xx21)dx

=[x22+6xx33]21+[10x3x22x33]12

=503  3A=50.



Q 27 :    

The area of the region, inside the circle (x23)2+y2=12 and outside the parabola y2=23x is :          [2025]

  • 3π+8

     

  • 3π8

     

  • 6π16

     

  • 6π8

     

(3)

We have, (x23)2+y2=12, a circle with centre (23,0) and radius 12 and a parabola y2=23x.

   Required Area = π(12)22023(23)12x1/2dx

                                   =6π2(23)1/2[x3/23·2]023

                                   =6π43(23)1/2(23)3/2

                                    =6π43(23)2=6π16.



Q 28 :    

Let f : RR be a twice differentiable function such that f(x + y) = f(x)f(y) for all x, yR. If f'(0)=4a and f satisfies f''(x)=3af'(x)f(x)=0, a > 0, then the area of the region R={(x,y) | 0yf(ax), 0x2} is :          [2025]

  • e4+1

     

  • e21

     

  • e41

     

  • e2+1

     

(2)

We have, f(x + y) = f(x)f(y)

Let f(x)=eλx

Differentiating w.r.t. x, we get

f'(x)=λ·eλx

Put x = 0, we get

f'(0)=λ          [ f'(0)=4a]

 λ=4a

So, f(x)=e4ax

Now, f''(x)3af'(x)f(x)=0

 ddx(λeλx)3a(λeλx)eλx=0

 λ23aλ1=0

 16a212a21=0  4a2=1

 a=12          [ a>0]

  f(x)=e2x

Now, f(x)=f(ax)=ex

   Area of region 02exdx=[ex]02=e21.



Q 29 :    

The area of the region enclosed by the curves y=x24x+4 and y2=168x is :          [2025]

  • 5

     

  • 4/3

     

  • 8/3

     

  • 8

     

(3)

The given curves are y=x24x+4 and y2=168x

Points of intersection are (2, 0) and (0, 4).

   Required Area =02(168x(x24x+4))dx

                                     =22022xdx02(x2)2dx

                                     =22[2(2x)3/23]02[(x2)33]02

                                     =16383=83 sq. units.



Q 30 :    

If the area of the region {(x,y):1x1, 0ya+e|x|ex, a>0} is e2+8e+1e, then the value of a is :          [2025]

  • 6

     

  • 8

     

  • 7

     

  • 5

     

(4)

Required area =a+01(a+exex)dx

=a+[ax+ex+ex]01

 2a+e+e12=e+8+1e

 2a2=8

 2a=10  a=5.