Q 21 :    

Let f:RR be a thrice differentiable function such that f(0)=0,f(1)=1,f(2)=-1,f(3)=2 and f(4)=-2. Then, the minimum number of zeros of (3f'f''+ff''')(x) is _______ .         [2024]



(5)

 f:RR and f(0)=0,f(1)=1,f(2)=-1,f(3)=2 and f(4)=-2, then

 f(x) has at least 4 real roots.

Then f'(x) has atleast 3 real roots and f''(x) has atleast 2 real roots.

ddx(f3·f'')=3f2·f'·f''+f3·f'''=f2(3f'·f''+f·f''').

Hence, f3.f'' has at least 6 roots.

Then its differentiation has at least 5 distinct roots.



Q 22 :    

Let [t] denote the greatest integer less than or equal to t. Let f:[0,)R be a function defined by f(x)=[x2+3]-[x]. Let S be the set of all points in the interval [0, 8] at which f is not continuous. Then aSa is equal to ______ .             [2024]



(17)

Given, f(x)=[x2+3]-[x]=[x2]-[x]+3

[x2] is discontinuous at 2,4,6,8 and [x] discontinuous at 1,4

 f(x) is discontinuous at 1,2,6,8                

                                                                               [∵ f(4+)=3=f(4-)]

   aSa=1+2+6+8=17



Q 23 :    

Let f:(0,π)R be a function given by

f(x)={(87)tan 8xtan 7x,0<x<π2a-8,x=π2(1+|cot x|)ba|tan x|,π2<x<π

 

where a,bZ. If f is continuous at x=π2, then a2+b2 is equal to _____.        [2024]



(81)

Since, f is continuous at x=π2

 limxπ-2f(x)=f(π2)=limxπ+2f(x)

Now, limxπ-2(87)(tan8xtan7x)

=limh0(87)tan(4π-8h)tan(3π+π2-7h)=limh0(87)tan(-8h)cot(7h)=(87)0=1

a-8=1a=9

Also, limππ2+f(x)=limππ2(1+|cotx|)ba|tanx|

=limh0(1-tanh)-b9coth

=limh0(1-tanh)(1tanh)·(tanh)·(-b9coth)=eb9=1b=0

Hence, a2+b2=81+0=81



Q 24 :    

For a differentiable function f:RR, suppose f'(x)=3f(x)+α, where αR, f(0)=1 and limx-f(x)=7. Then 9f(-loge3) is equal to ______ .                  [2024]



(61)

We have f'(x)=3f(x)+α

Let f(x)=y and dydx=f'(x)dydx=3y+αdy3y+α=dx

13log(3y+α)=x+c    ... (i) [On integrating]

Now, f(0)=1, so y(0)=1

13log(3+α)=c

13log(3y+α3+α)=x                        [Putting value of c in eq. (i)]

3y+α3+α=e3xy=e3x(3+α)-α3=f(x)

Now, limx-f(x)=7

limx-e3x(3+α)-α3=7-α3=7

α=-21

  f(x)=7-6e3x

So, 9f(-loge3)=9(7-6e3(-loge3))

=9(7-627)=63-2=61



Q 25 :    

If y=(x+1)(x2-x)xx+x+x+115(3cos2x-5)cos3x, then 96y'(π6) is equal to _______ .             [2024]



(105)

We have, y=(x+1)(x2-x)x(x+1)+x+115(3cos2x-5)cos3x

=x(x-1)(x+1+x)x(x+x+1)+115(3cos2x-5)cos3x

=x-1+15cos5x-13cos3x

y'=1+15·5cos4x·(-sinx)-13·3·cos2x·(-sinx)

=1-sinx·cos4x+sinx·cos2x

96y'(π6)=96[1-12·916+12·34]=105



Q 26 :    

Let for a differentiable function f:(0,)R, f(x)-f(y)loge(xy)+x-y,x, y(0,). 

 

Then n=120f'(1n2) is equal to _____ .        [2024]



(2890)

f(x)-f(y)loge(xy)+x-y(x,y)(0,)                ...(i)

Now, f'(x)=limh0f(x+h)-f(x)h=limh0loge(x+hx)+hh

=limh0[loge(1+hx)h+1]=1x+1                          ..(ii)

Now, n=120f'(1n2)=n=12011n2+1                                [Using (i)]

=n=120(n2+1)=[n(n+1)(2n+1)6+n]n=20

=20×21×416+20=2870+20=2890



Q 27 :    

Let f(x)=x3+x2f'(1)+xf''(2)+f'''(3),xR. Then f'(10) is equal to _____ .         [2024]



(202)

f(x)=x3+x2f'(1)+xf''(2)+f'''(3),xR

f'(x)=3x2+2xf'(1)+f''(2),

f''(x)= 6x+2f'(1)

f'''(x)=6f'''(3)=6

f''(2)=6(2)+2f'(1)=12+2f'(1),

             f'(1)=3(1)2+2(1)f'(1)+f''(2)=3+2f'(1)+f''(2)

f'(1)=3+2f'(1)+12+2f'(1)

3f'(1)=-15f'(1)=-5

  f''(2)=12+2(-5)=2

Now, f'(10)=3(10)2+2(10)f'(1)+f''(2)

                       =300+20(-5)+2=202



Q 28 :    

If the function f(x)={1|x|,|x|2ax2+2b,|x|<2 is differentiable on R, then 48(a+b) is equal to ______ .               [2024]



(15)

f(x)={1|x|,|x|2ax2+2b,|x|<2

Since, f is differentiable so f must be continuity

⇒R.H.L. at 2=L.H.L. at 2

12=4a+2b                                                                    ...(i)

Also, f is differentiable at x=2,

Now, around 2, f(x)={1x,x2ax2+2b,x<2

f'(x)={-1x2,x22ax,x<2

Now, R.H.D. at x=2=L.H.D. at x=2

-14=4aa=-1162b=12+14=34  [Using (i)]

b=38

So, 48(a+b)=48(38-116)=48×516=15