Topic Question Set


Q 41 :    

If f(x)=4x+36x-4, x23 and (fof)(x)=g(x), where g:R-{23}R-{23}, then (gogog)(4) is equal to                [2024]

  • 1920

     

  • -1920

     

  • -4

     

  • 4

     

(4)

    Here, f(x)=4x+36x-4

    f[f(x)]=4f(x)+36f(x)-4=4(4x+36x-4)+36(4x+36x-4)-4

                =16x+12+18x-126x-4=34x34=x

      f[f(x)]=xg(x)=x

    Now, (gogog)(4)=gog[g(4)]=gog(4)=g(4)=4

 



Q 42 :    

Consider the function f:RR defined by f(x)=2x1+9x2. If the composition of f,(fofofo...of)10 times (x) =210x1+9αx2, then the value of 3α+1 is equal to _________ .                                                   [2024]



(1024)

    We have, f(x)=2x1+9x2

      (fof)(x)=2f(x)1+9(f(x))2=4x1+9x21+9×4x21+9x2=4x1+45x2=22x1+5×9x2

     (fofof)(x)=4×2x1+9x21+45×4x21+9x2=23x1+21×9x2

    (fofofof)(x)=24x1×85×9x2

        (fofofo.....of) n times(x) =2nx1+9(4n-13)x2

        (fofofo.....of) 10 times(x) =210x1+9(410-13)x2=210x1+9αx2

                                                                                                    ( Given)

    On comparing, we get

    α=410-133α+1=410

   3α+1=410=45=1024.



Q 43 :    

If a function f satisfies f(m+n)=f(m)+f(n) for all m, nN and f(1)=1, then the largest natural number λ such that k=12022f(λ+k)(2022)2 is equal to ___________ .                  [2024]



(1010)

   We have, f(m+n)=f(m)+f(n)

   So, f(x)=kx

      f(1)=1k=1

   Hence, f(x)=x

   Now, k=12022f(λ+k)=k=12022(λ+k)

            =λ+λ+...+λ2022+(1+2+....+2022)

    =2022λ+2022×20232(2022)2 (Given)

   λ20212

   So, largest λ=1010 



Q 44 :    

Let A={(x,y):2x+3y=23,x,yN} and B={x:(x,y)A}. Then the number of one-one functions from A to B is equal to ________ .        [2024]



(24)

    We have, A={(x,y):2x+3y=23,x,yN}

   B={x:(x,y)A}

  A={(1,7),(4,5),(7,3),(10,1)}

   and B={1,4,7,10}

   Total number of one-one functions from A to B = 4! = 24



Q 45 :    

Let A = {1, 2, 3, ..., 7} and let P(A) denote the power set of A. If the number of functions f:AP(A) such that af(a),  aA is mn, m and nN and m is least, then m+n is equal to _____.                [2024]



(44)

Given, f:AP(A)af(a)

It means 'a' will connect with subset which contain element a.

Total options for 1 will be 26( 26 subsets contains 1)

Similarly, for every other element

Now, number of functions from A to P(A) = (26)7=242

i.e., m+n=2+42=44



Q 46 :    

Let f,g:RR be defined as:                                                                [2024]

f(x)=|x-1| and g(x)={ex,x0x+1,x0.

Then the function f(g(x)) is

  • onto but not one-one.

     

  • neither one-one nor onto.

     

  • both one-one and onto.

     

  • one-one but not onto.

     

(2)

f(g(x))=|g(x)-1|

={|ex-1|,x0|x+1-1|,x0

={ex-1,x0-x,x0

f(g(x)) is neither one-one nor onto as negative numbers have no pre-image.



Q 47 :    

Let f:RR and g:RR be defined as:

f(x)={logex,x>0e-x,x0 and g(x)={x,x0ex,x<0.

Then, gof:RR is                                                                            [2024]

  • neither one-one nor onto

     

  • onto but not one-one

     

  • one-one but not onto

     

  • both one-one and onto

     

(1)

 g(f(x)) ={f(x),f(x)0ef(x),f(x) < 0

={logex,x1e-x,x0elogex=x, 0<x<1 

gof(x)={e-x ,x0x ,0<x<1logex,x1

Now, range of gof=[0,)R

Hence, not one-one and not onto.



Q 48 :    

If the function f:(-,-1](a,b] defined by f(x)=ex3-3x+1 is one-one and onto, then the distance of the point P(2b+4, a+2) from the line x+e-3y=4 is :        [2024]

  • 21+e6

     

  • 41+e6

     

  • 31+e6

     

  • 1+e6

     

(1)

Given f(x)=ex3-3x+1

  f'(x)=ex3-3x+1[3(x-1)(x+1)]0

As, ex3-3x+1 is always positive.

  3(x-1)(x+1)0

x(-,-1][1,)

For onto function, Range = Co-domain

  a=f(-)=e-=0

and b=f(-1)=e-1+3+1=e3

  P(2b+4,a+2)=P(2e3+4,2)

Now, distance of the point P(2e3+4,2) from the line x+e-3y-4=0

=2e3+4+2e-3-41+e-6=2(e3+e-3)1+e-6=2(e6+1e3)×11+e6×e3

=21+e6

 



Q 49 :    

If the domain of the function

f(x)=110+3xx2+1x+|x| is (a, b), then

(1+a)2+b2 is equal to:          [2025]

  • 29

     

  • 26

     

  • 30

     

  • 25

     

(2)

We have, f(x)=110+3xx2+1x+|x|

For f(x) to be defined, we must have 10+3xx2>0

 x23x10<0  (x5)(x+2)<0  2<x<5

Also, x + |x| > 0

Now, if x > 0, then x + |x| > 0

If x < 0, then |x| = –x  x + |x| = xx = 0

   The domain of 1x+|x| is x > 0

   Domain of f(x) is 0 < x < 5 i.e., (0, 5)

  a = 0 and b = 5

 (1+a)2+b2=12+52=26.



Q 50 :    

If the domain of the function

f(x)=loge(2x35+4x)+sin1(4+3x2x) is [α,β), then α2+4β

is equal to           [2025]

  • 7

     

  • 5

     

  • 3

     

  • 4

     

(4)

We have, f(x)=loge(2x35+4x)+sin1(4+3x2x)

For f(x) to be defined we have,

2x35+4x>0 and |4+3x2x|1

Now, 2x35+4x>0

Case I : 2x – 3 > 0 and 5 + 4x > 0

 x > 3/2 and x > – 5/4

 x(3/2,)          ... (i)

Case II : 2x – 3 < 0 and 5 + 4x < 0

 x < 3/2 and x < – 5/4

 x(,5/4)          ... (ii)

From (i) and (ii), we get

x(,54)(32,)          ... (iii)

Also, |4+3x2x|1

 14+3x2x1  14+3x2x and 4+3x2x1

 04+3x2x+1 and 4+3x2x10

 06+2x2x and 2+4x2x0

 3x and x12, x2

 x[3,12]          ... (iv)

From (iii) and (iv), we get

x[3,54)

   α=3 and β=54

Thus, α2+4β=95=4..