Topic Question Set


Q 11 :    

Let A = {1, 2, 3, 4, .... ,10} and B = {0, 1, 2, 3, 4}. The number of elements in the relation R={(a,b)A×A:2(a-b)2+3(a-b)B} is __________ .           [2023]



(18)

A={1,2,3,4,,10}B={0,1,2,3,4}

R={(a,b)A×A:2(a-b)2+3(a-b)B}

Now, 2(a-b)2+3(a-b)=(a-b)[2(a-b)+3]B

a=b or a-b=-2

When a=b10 ordered pairs

When a-b=-28 ordered pairs. Total =18



Q 12 :    

Let A = {0, 3, 4, 6, 7, 8, 9, 10} and R be the relation defined on A such that R={(x,y)A×A:x-y is odd positive integer or x-y=2}. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to __________ .              [2023]



(19)

A={0,3,4,6,7,8,9,10}

R={(x,y)A×A:x-y is an odd positive integer or x-y=2}

 Possible pairs to be added are 

{(0,3),(0,7),(0,9),(3,4),(3,6),(3,8),(3,10),(4,7),(4,9),(6,7),(6,9), (7,8),(7,10),(8,9),(9,10),(4,6),(6,8),(7,9),(8,10)}

  We need to add a minimum of 19 elements to form it symmetric.

 



Q 13 :    

The number of relations, on the set {1, 2, 3} containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is _________ .               [2023]



(3)

Let we have set A={1,2,3}

By definition, we can say that

For reflexivity: (1,1),(2,2),(3,3)R  ...(i)

For symmetry: (2,1),(1,2)R  ...(ii)

For transitivity: (1,2)R and (2,3)R(1,3)R  ...(iii)

But according to the question,

For not symmetric: (2,1) and (3,2)R  ...(iv)

So, R1={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}

R2={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3),(2,1)}

and R3={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3),(3,2)}



Q 14 :    

Let A = {-4, -3, -2, 0, 1, 3, 4} and R={(a,b)A×A:b=|a|or b2=a+1} be a relation on A.

Then the minimum number of elements, that must be added to the relation R so that it becomes reflexive and symmetric, is ________ .                 [2023]



(7)

R={(-4,4),(-3,3),(3,-2),(0,1),(0,0),(1,1),(4,4),(3,3)}

For reflexive, number of elements added to the relation R is  (-2,2),(-4,-4),(-3,-3)

For symmetric, number of elements added to the relation is  (4,-4),(3,-3),(-2,3),(1,0)

So, total number of elements =3+4=7



Q 15 :    

Let A = {1, 2, 3, 4} and R be a relation on the set A x A defined by R={((a,b),(c,d)):2a+3b=4c+5d}.

Then the number of elements in R is ___________ .                                                                                    [2023]



(6)

A={1,2,3,4}

A×A={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}

R={((a,b),(c,d)):2a+3b=4c+5d}

On checking the elements of A×A, we get:

{((1,4),(1,2)),((2,3),(2,1)),((3,1),(1,1)),((3,4),(2,2)), ((4,2),(1,2)),((4,3),(3,1))} will satisfy R.

Number of elements in R=6



Q 16 :    

The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation is _____________ .    [2023]



(13)

Given S={(a,b),(b,c),(b,d)}

Reflexive:(a,a),(b,b),(c,c),(d,d)Symmetric:(b,a),(c,b),(d,b)Transitive:(a,c),(a,d),(d,c)(c,a)(d,a)(c,d)

So, 13 elements must be added.



Q 17 :    

Let a relation R on N×N be defined as:

(x1,y1)R(x2,y2) if and only if x1x2 or y1y2.

Consider the two statements:

(I) R is reflexive but not symmetric.

(II) R is transitive.

Then which one of the following is true?                      [2024]

  • Both (I) and (II) are correct.

     

  • Neither (I) nor (II) is correct.

     

  • Only (I) is correct.

     

  • Only (II) is correct.

     

(3)

   (x1,y1)R(x2,y2)

   x1x2 or y1y2

   For reflexive :

   (x1,y1)R(x1,y1)

   x1x1 or y1y1 which is true.

   So, R is reflexive.

   For symmetric:

   When (x1,y1)R(x2,y2)

   x1x2 or y1y2

   x2x1 or y2y1

   They may or may not be true.

   For example (1, 2) and (3, 4)

   13 and 24 but 31 and 42.

       R is not symmetric.

   For transitive :

   Take pairs as (3, 9), (4, 6), (2, 7)

   (3,9)R(4,6) as 43

   (4,6)R(2,7) as 76

   But (3,9)R(not)(2,7), as neither 23 nor 79

   So, R is not transitive.

 



Q 18 :    

Let the relations R1 and R2 on the set X={1,2,3,...,20} be given by R1={(x,y):2x-3y=2} and R2={(x,y):-5x+4y=0}. If M and N be the minimum number of elements required to be added in R1 and R2, respectively, in order to make the relations symmetric, then M+N equals                  [2024]

  • 10

     

  • 8

     

  • 16

     

  • 12

     

(1)

    R1={(x,y):2x-3y=2}

    R1={(4,2),(7,4),(10,6),(13,8),(16,10),(19,12)}

   So, 6 elements are needed to make R1 symmetric

   M=6

   R2={(x,y):-5x+4y=0}

   R2={(4,5),(8,10),(12,15),(16,20)}

   So, 4 elements are needed to make R2 symmetric

  N=4

  M+N=6+4=10



Q 19 :    

Let A={1, 2, 3, 4, 5}. Let R be a relation on A defined by xRy if and only if 4x5y. Let m be the number of elements in R and n be the minimum number of elements from A×A that are required to be added to R to make it a symmetric relation. Then m+n is equal to:            [2024]

  • 24

     

  • 26

     

  • 25

     

  • 23

     

(3)

   Given, A={1,2,3,4,5}

   R={(x,y):4x5y,x,yA}

   R={(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,4),(5,5)}

     n(R)=16=m

   Elements needed to make R symmetric={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3)}  i.e., 9 elements

     n=9

   So, m+n=16+9=25

 



Q 20 :    

Let A = {2, 3, 6, 8, 9, 11} and B = {1, 4, 5, 10, 15}. Let R be a relation on A×B defined by (a, b) R(c, d) if and only if 3ad−7bc is an even integer. Then the relation R is                               [2024]

  • an equivalence relation.

     

  • reflexive and symmetric but not transitive.

     

  • reflexive but not symmetric.

     

  • transitive but not symmetric.

     

(2)

   We have, (a,b)R(c,d)3ad-7bc is an even integer.

   For reflexive : (a,b)R(a,b)3ab-7ab=-4ab, which is an even integer.

   For symmetric, (a,b)R(c,d)3ad-7bc is an even integer.

    3ad-7bc+4bc+4ad is also an even integer

                                                      (even + even = even number)

   7ad-3bc is an even integer

  3cb-7da is also an even integer

  (c,d)R(a,b)

  For transitive, (a,b)R(c,d) and (c,d)R(e,f)

  3ad-7bc and 3cf-7de is an even integer.

  For a=2,b=5,c=6,d=8,e=9,f=1

  3af-7bc=3×2×1-7×5×9=6-315=-309, which is not an even integer.

     Given relation is not transitive.