Topic Question Set


Q 1 :    

Let A = {1, 2, 3, 4, 5, 6, 7}. Then the relation R={(x,y)A×A:x+y=7} is                     [2023]

 

 

  • an equivalence relation

     

  • reflexive but neither symmetric nor transitive

     

  • transitive but neither symmetric nor reflexive

     

  • symmetric but neither reflexive nor transitive

     

 



Q 2 :    

Let A = {2, 3, 4} and B = {8, 9, 12}. Then the number of elements in the relation

 

R={((a1,b1),(a2,b2))(A×B,A×B):a1 divides b2 and a2 divides b1} is                   [2023]

  • 24

     

  • 12 

     

  • 36 

     

  • 18

     

 



Q 3 :    

Let A = {1, 3, 4, 6, 9} and B = {2, 4, 5, 8, 10}. Let R be a relation defined on A x B such that R={((a1,b1),(a2,b2)):a1b2 and b1a2}. Then the number of elements in the set R is             [2023]

  • 52

     

  • 180 

     

  • 26 

     

  • 160

     

 



Q 4 :    

Let R be a relation on R, given by

R = {(a,b):3a-3b+7 is an irrational number}.

Then R is                                                         [2023]

  • reflexive and symmetric but not transitive

     

  • reflexive and transitive but not symmetric

     

  • reflexive but neither symmetric nor transitive

     

  • an equivalence relation

 



Q 5 :    

Let P(S) denote the power set of S = {1, 2, 3, ...., 10}. Define the relations R1 and R2 on P(S) as AR1B if (ABC)(BAC)=ϕ and AR2B if ABC=BAC,A,BP(S). Then                  [2023]

  • both R1 and R2 are not equivalence relations

     

  • only R2 is an equivalence relation

     

  • only R1 is an equivalence relation

     

  • both R1 and R2 are equivalence relations

(D)

 



Q 6 :    

The relation R={(a,b):gcd(a,b)=1,2ab,a,b,Z} is                      [2023]

 

  • reflexive but not symmetric

     

  • transitive but not reflexive

     

  • symmetric but not transitive 

     

  • neither symmetric nor transitive

     

Enter Answer here

 



Q 7 :    

Let R be a relation defined on  as a R b if 2a+3b is a multiple of 5, a,b.                   [2023]

  • symmetric but not transitive

     

  • not reflexive

     

  • an equivalence relation 

     

  • transitive but not symmetric

     

 



Q 8 :    

The minimum number of elements that must be added to the relation R = {(a, b), (b, c)} on the set {a, b, c} so that it becomes symmetric and transitive is              [2023]

  • 3

     

  • 7

     

  • 4

     

  • 5

     

 



Q 9 :    

Let R be a relation on N x N defined by (a, b) R(c, d) if and only if ad(b-c)=bc(a-d). Then R is                  [2023]

  • transitive but neither reflexive nor symmetric

     

  • symmetric but neither reflexive nor transitive

     

  • symmetric and transitive but not reflexive

     

  • reflexive and symmetric but not transitive

     

 



Q 10 :    

Among the relations

 

S={(a,b):a,bR-{0},2+ab>0} and 

 

T={(a,b):a,bR,a2-b2Z}                                      [2023]

  • S is transitive but T is not

     

  • both S and T are symmetric

     

  • neither S nor T is transitive   

     

  • T is symmetric but S is not