Topic Question Set


Q 1 :    

Let the sets S={2,4,8,16,,512} be partitioned into 3 sets A,B,C with equal number of elements such that ABC=S and AB=BC=AC=ϕ. The maximum number of such possible partitions of S is equal to                [2024]

  • 1520

     

  • 1640

     

  • 1710

     

  • 1680

     

(D)

We have, S={2,4,8,16,,512}

                      ={21,22,23,24,,29} so, |S|=9

|A|=|B|=|C| and ABC=S

and AB=BC=AC=ϕ

Since, |S|=9 so |A|=|B|=|C|=3

So, number of ways of making partition of S=C39×C36×C33

=9!6!3!×6!3!×3!×1

=9!3!×3!×3!=1680

 



Q 2 :    

Let 0rn. If Cr+1n+1:Cr:Cr-1n-1n=55:35:21, then 2n+5r is equal to               [2024]

  • 55

     

  • 50

     

  • 60

     

  • 62

     

(B)

We have, Cr+1:Crnn+1=55:35

(n+1)!(r+1)!(n-r)!×(n-r)!r!n!=5535

n+1r+1=117

7n=11r+4                                            ...(i)

Also, Crn:Cr-1n-1=35:21

n!r!(n-r)!×(r-1)!(n-r)!(n-1)!=3521

nr=53

3n=5r                                                    ...(ii)

Solving (i) and (ii), we get

7(5r3)=11r+4

35r-33r=12

r=6 and n=10

So, 2n+5r=20+30=50



Q 3 :    

The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to                     [2024]

  • 175

     

  • 181

     

  • 179

     

  • 177

     

(C)

We have, MMAATTHEICS

Case-I : All distinct =C58=56

Case-II : 2 identical + 3 distinct =C1×C3=10573

Case-III : 2 identical + 2 identical + 1 distinct =C2×C16=183

Hence, total number of ways = 56 + 105 + 18 = 179



Q 4 :    

Crn-1=(k2-8)Cr+1n if and only if                  [2024]

  • 22<k3  

     

  • 23<k32  

     

  • 22<k<23  

     

  • 23<k<33

     

(A)

We have, Crn-1=(k2-8)Cr+1n

(n-1)!(n-(1+r))!r!=(k2-8)n!(n-(r+1))!(r+1)!

1=(k2-8)nr+1k2-8=r+1n1           [nr+1]

k2-81k2-90(k-3)(k+3)0

-3k3                                                                                 ...(i)

But k2>8, as Crn-1 can't be negative and 0.

k2-8>0(k-22)(k+22)>0

k<-22 or k>22                                                      ...(ii)

From (i) and (ii), 22<k3 or -3k<-22



Q 5 :    

The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is         [2024]

  • 136

     

  • 406

     

  • 142

     

  • 130

     

(A)

We have, 21 identical apples.

Let x1,x2 and x3 be the number of apples received by the three children.

     x1+x2+x3=21

Now, let x1'=x1-2,x2'=x2-2 and x3'=x3-2

    x1'+x2'+x3'=21-6=15

    Required number of ways =C3-1 15+3-1

                                                       =C217=136

 



Q 6 :    

Let a=1+C223!+C234!+C245!+,b=1+C01+1C11!+C02+2C1+2C22!+C03+3C1+3C2+3C33!+ Then 2ba2 is equal to ______ .             [2024]



(8)

Given, a=1+C223!+C234!+C245!+,b=1+C01+C111!+C02+C12+C222!+...,

b=1+21!+222!+233!+=e2                [ ex=1+x1!+x22!+x33!+]

Now, a=1+r=2C2r(r+1)!=1+r=2r(r-1)2(r+1)!

=1+12r=2(r+1)r-2r(r-1)!=1+12r=21(r-1)!-12r=22r(r+1)!

=1+12(11!+12!+...)-r=2(r+1)-1(r+1)!

=1+12(e-1)-r=21r!+r=21(r+1)!

=1+12(e-1)-(e-11!-10!)+(e-11!-10!-12!)

=1+e2-12-e+2+e-2-12=e22ba2=2e2e24=8

 



Q 7 :    

There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is _______.            [2024]



(5626)

Group A Group B Ways
4m 4w C44·4C4=1
3m+1w 1m+3w C34·5C1·5C14C3=400
2m+2w 2m+2w C24·5C25C24C2=3600
1m+3w 3m+w C154C35C34C1=1600
4w 4m C455C4=25

 

Total number of ways = 1 + 400 + 3600 + 1600 + 25 = 5626



Q 8 :    

The number of 3-digit numbers, formed using the digits 2, 3, 4, 5, and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to _______.           [2024]



(36)

Possible triplets for which number is divisible by 3 are (2, 3, 4), (2, 3, 7), (3, 5, 4), (3, 5, 7)

These 4 triplets can be arrange in 4×3!.

Total number of 3-digit numbers made by using the digits 2, 3, 4, 5, and 7 =C3×3!5

Required number which are not divisible by 3 =C3×3!-4×3!=6×3!=365



Q 9 :    

The lines L1,L2,...L20 are distinct. For n=1,2,3,...,10 all the lines L2n-1 are parallel to each other and all the lines L2n pass through a given point P. The maximum number of points of intersection of pairs of lines from the set {L1,L2,...,L20} is equal to ______.      [2024]



(101)

Let L1,L3,...,L19 are parallel to each other and L2,L4,L6,,L20 are passing through a point P.

    Point of intersection of pairs of lines from the set {L1,L2,,L20}=C2-C210-C21020+1=101

 



Q 10 :    

In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections: A, B, and C. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A has 8 questions, section B has 6 questions and section C has 6 questions, then the total number of ways a student can select 15 questions is ______.         [2024]



(11376)

A            B          C             Number of ways

5            6           4             C58×C66×C46=56×1×15=840

6            5           4             C68×C56×C46=28×6×15=2520

6            4           5             C68×C46×C56=28×15×6=2520

5            5           5             C58×C56×C56=56×6×6=2016

4            6           5             C48×C66×C56=70×1×6=420

4            5           6             C48×C56×C66=70×6×1=420

5            4           6            C58×C46×C66=56×15×1=840

7         4            4            C78×C46×C46=8×15×15=1800

    Required number of ways = 840 + 2520 + 2520 + 2016 + 420 + 420 + 840 = 11376