Q 1 :    

A circle is inscribed in an equilateral triangle of side of length 12. If the area and perimeter of any square inscribed in this circle are m and n, respectively, then m+n2 is equal to                                [2024]

  • 396

     

  • 408

     

  • 414

     

  • 312

     

(2)

Let radius of inscribed circle be r.

r=13AD

=13a2-a24,  a is side of triangle.

=a23=1223=23

Area of square DEFG, m=12×(diagonal)2

        =12×(2r)2=12×4×12=24 sq. units

Side of square =26

Perimeter of square, n=4×26=86

  m+n2=24+384=408



Q 2 :    

If P(6,1) be the orthocentre of the triangle whose vertices are A(5, -2), B(8, 3) and C(h, k), then the point C lies on the circle                    [2024]

  • x2+y2-65=0

     

  • x2+y2-74=0

     

  • x2+y2-52=0

     

  • x2+y2-61=0

     

(1)

Slope of AP=1+26-5=3

Slope of BC=-1Slope of AD

=-1Slope of AP

=-13

Equation of line BC is given by (y-3)=-13(x-8)

3y+x-17=0                                        ...(i)

Now, slope of BP=1-36-8=1

Slope of AC=-1

Equation of AC is y+2=-1(x-5)

i.e., y+x-3=0                                           ...(ii)

C is the point of intersection of AC and BC, then solving equation (i) and (ii), we get

C=(-4,7), which lies on the circle x2+y2-65=0.



Q 3 :    

Let (5,a4) be the circumcenter of a triangle with vertices A(a,-2), B(a,6)  and C(a4,-2). Let α denote the circumradius, β denote the area, and γ denote the perimeter of the triangle. Then α+β+γ is              [2024]

  • 62

     

  • 60

     

  • 30

     

  • 53

     

(4)

The circumcentre of the triangle ABC is O(5,a4)         OA2=OB2

(5-a)2+(a4+2)2=(5-a)2+(a4-6)2

4a=32a=8

   A(8,-2), B(8,6) and C(2,-2)

AC=36+0=6, BC=36+64=10, AB=64=8

Perimeter, γ=6+10+8=24

Circumradius, α=OA=9+16=5

Area, β=12×6×8=24

   α+β+γ=5+24+24=53



Q 4 :    

In a triangle ABC, BC = 7, AC = 8, AB=αN and cosA=23. If 49cos(3C)+42=mn, where gcd(m,n)=1, then m+n is equal to ________ .         [2024]



(39)

cosA=b2+c2-a22bc=82+α2-722·8·α

23=α2+1516α

32α=3α2+45

3α2-32α+45=0α=53,9

α=9  [αN]

Now, cosC=72+82-922×7×8cosC=27

Now, cos3C=4cos3C-3cosC=4×873-67

So, 49cos3C+42=49(4×873-67)+42=327-42+42=mn

m=32, n=7; m+n=32+7=39



Q 5 :    

If the orthocentre of the triangle formed by the lines 2x+3y-1=0, x+2y-1=0 and ax+by-1=0, is the centroid of another triangle, whose circumcentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a-b| is _________ .            [2024]



(16)

Let ABC be the given triangle with sides 2x+3y=1, x+2y=1 and ax+by=1

Let PQR be another triangle whose circumcentre, orthocentre and centroid be C1,H1 and G1 respectively. We know centroid divides circumcentre and orthocentre in the ratio 1 : 2.

   Coordinates of G1=(6-63,8-83)=(0,0)

  Orthocentre of ABC, H2=(0,0)

Slope of AH2=-1Slope of BC1-0-1-0=-1-ab-a=b

Slope of AB=-23

Now, slope of CH2=32

   Equation of CH2 is given by y=32x

Now, C is the point of intersection of y=32x and x+2y-1=0

   C(14,38) are the coordinates of C which will also satisfy the equation of BC.

a4-38a-1=0a=-8, b=8

|a-b|=|-8-8|=16