Q 41 :    

Let m and n be number of points at which the function f(x)=max {x,x3,x5,...,x21}, xR, is not differentiable and not continuous, respectively, Then m + n is equal to __________.           [2025]



(3)

Here, f(x)={x,x<1x21,1x<0x,0x<1x21,x1 is continuous everywhere.

Then, n = 0

 f'(x)={1,x<121x20,1x<01,0x<121x20,x1 is not differentiable at

x=1,0,1  m=3

So, m + n = 3.



Q 42 :    

The number of points of discontinuity of the function f(x)=[x22][x], x[0,4], where [·] denotes the greatest integer function, is __________.          [2025]



(8)

Values of x, where [x22] may be discontinuous on x[0,4] are 2,2,6,22,10,23,14,4

And for [x], values of x are = 1, 4

On checking for continuity at these points, we get f(x) is discontinuous at x=1,2,2,6,22,10,23,14 and continuous at x = 4.

Hence, f(x) is discontinuous for 8 values of x[0,4].



Q 43 :    

If the function f(x)=tan(tanx)sin(sinx)tanxsinx is continuous at x = 0, then f(0) is equal to ________.         [2025]



(2)

f(0)=limx0tan(tanx)sin(sinx)tanx+tanxsinx+sinxtanxsinx

=limx0tan(tanx)tanxtan3x×tan3xx3+tanxsinxx3+sinxsin(sinx)sin3x×sin3xx3tanxsinxx3

=1+(13+16)(13+16)=2.          [From L'Hospital's Rule]



Q 44 :    

Let f(x)={3x,x<0min {1+x+[x], x+2[x]},0x25,x>2, where [·] denotes greatest integer function. If α and β are the number of points, where f is not continuous and is not differentiable, respectively, then α+β equals __________.          [2025]



(5)

f(x)={3x,x<0min {1+x+[x], x+2[x]},0x25,x>2

 f(x)={3x,x<0x,0x<1x+2,1x<25,x>2

   By graph, we have f(x) is not continuous at x{1,2}  α=2

f(x) is not differentiable at x{0,1,2}  β=3

  α+β=5.