Q 31 :    

Consider the function f:(0,)R defined by f(x)=e-|logex|.  If m and n be respectively the number of points at which f is not continuous and f is not differentiable, then m+n is                            [2024]

  • 1

     

  • 0

     

  • 2

     

  • 3

     

(1)

Given, f(x)=e-|logex|

f(x)={1/e-logex,0<x<11/elogex,x1={x,0<x<11/x,x1

 f(x) is continuous everywhere for x>0 but not differentiable at x=1.

Thus, m=0,n=1

Hence, m+n=1



Q 32 :    

Let f(x)=2x-x2,  xR. If m and n are respectively the number of points at which the curves y=f(x) and y=f'(x) intersect the x-axis, then the value of m+n is _________.                 [2024]



(5)

We have, f(x)=2x-x2

By graph, since f(x) intersects the x-axis at 3 points. So, number of solutions of f(x)=3

  m=3

Also, f'(x)=2xlog2-2x

By graph, since f'(x) intersects x-axis at 2 points. So, number of solutions of f'(x)=2

  n=2

Thus, m+n=3+2=5



Q 33 :    

Let f:RR be a twice differentiale function such that (sin x cos y)(f(2x + 2y) – f(2x – 2y)) = (cos x sin y)(f(2x + 2y) + f(2x – 2y)), for all x, y  R.

If f'(0)=12, then the value of 24f''(5π3) is :          [2025]

  • –3

     

  • –2

     

  • 3

     

  • 2

     

(1)

We have, 

(sin x cos y)(f(2x + 2y) – f(2x – 2y)) = (cos x sin y)(f(2x + 2y) + f(2x – 2y))

 f(2x + 2y) sin (xy) = f(2x – 2y) sin (x + y)

 f(2x+2y)sin (x+y)=f(2x2y)sin (xy)

Put 2x + 2y = m and 2x – 2y = n, we get

f(m)sin (m2)=f(n)sin (n2)=K

 f(m)=K sin (m2) and f(n) = K sin (n2)

 f(x)=K sin (x2) f'(x) = K2 cos (x2)

Now, f'(0)=12  12=K2 K=1

  f'(x)=12 cos x2 f''(x)=14 sin x2

  24f''(5π3)=24(14 sin(5π6))=248=3.



Q 34 :    

Let f(x)={(1+ax)1/x,x<01+b,x=0(x+4)1/22(x+c)1/32x>0 be continuous at x = 0. Then eabc is equal to :          [2025]

  • 48

     

  • 72

     

  • 36

     

  • 64

     

(1)

L.H.L. = f(0)=elimx01xlog (1+ax)=elimx0a1+ax=ea

R.H.L. = f(0+)=limx0(x+4)1/22(x+c)1/32=0c1/32

Since, f(x) is continuous at x = 0

   Right hand limit exists

 c1/32=0  c1/3=2  c=8          ... (i)

Now, f(0+)=2222           (00 form)

=120+413(0+c)2/3          [Using L'Hospital's Rule]

=34c2/3=34(8)2/3=3            [From (i)]

Now, f(0)=f(0)=f(0+)

 1+b=ea=3  b=2 and ea=3

  eabc=3×2×8=48.



Q 35 :    

If y(x)=|sinxcosxsinx+cosx+1272827111|, x, then d2ydx2+y is equal to          [2025]

  • –1

     

  • 27

     

  • 1

     

  • 28

     

(1)

We have, 

y(x)=|sinxcosxsinx+cosx+1272827111|

 y(x) = sin x (28 – 27) – cos x (27 – 27) + (sin x + cos x + 1)(27 – 28)

y(x) = – cos x – 1

On differentiate w.r.t. x, we get

dydx=sinx  d2ydx2=cosx

  d2ydx2+y=cosx1cosx=1.



Q 36 :    

Let f:RR be a continuous function satisfying f(0) = 1 and f(2x) – f(x) = x for all x R. If limn{f(x)f(x2n)}=G(x), then r=110G(r2) is equal to          [2025]

  • 540

     

  • 420

     

  • 385

     

  • 215

     

(3)

We have, f(2x) – f(x) = x

 f(x)f(x2)=x2

 f(x2)f(x4)=x4

 f(x2n1)f(x2n)=x2n

On adding all the above statements, we get

f(2x)f(x2n)=x+x2+x4+...+x2n

                           =x{1(12)n+1112}=2x[1(12)n+1]

 f(x)+xf(x2n)

       =2x[1(12)n+1]

 limn[f(x)f(x2n)]

       =limn[2x(1(12)n+1)x]

 G(x)=x  r=110r2=385.



Q 37 :    

Let f(x) be a real differentiable function such that f(0) = 1 and f(x+y)=f(x)f'(y)+f'(x)f(y) for all x, y  R. Then n=1100loge f(n) is equal to :          [2025]

  • 2406

     

  • 5220

     

  • 2525

     

  • 2384

     

(3)

f(x+y)=f(x)f'(y)+f'(x)f(y)

When x = 0, y = 0, we have

f(0)=f(0)f'(0)+f'(0)f(0)

 f(0)=2f'(0)f(0)  f'(0)=12

When y = 0, f(x)=f(x)f'(0)+f(0)f'(x)

 12f(x)=f'(x)          [ f(0) = 1]

Integrating both sides, we get f(x)=ex/2·C

Now, f(0)=1  f(x)=ex/2  loge f(x)=x2

  n=1100loge f(n)

= n=1100n2=12(100)(101)2=2525.



Q 38 :    

If the function f(x)={2x{sin(k1+1)x+sin(k21)x},x<04,  x=02xloge(2+k1x2+k2x),x>0 is continuous at x = 0, then k12+k22 is equal to          [2025]

  • 20

     

  • 5

     

  • 10

     

  • 8

     

(3)

limx0f(x)=limx02x{sin(k1+1)x+sin(k21)x}=4

 2(k1+1)+2(k21)=4

 2[k1+1+k21]=4

 k1+k2=2          ... (i)

limx0+f(x)=limx02x loge (2+k1x2+k2x)=4

limx0+1x loge (2+k1x2+k2x)=2;

limx0+1x loge (1+(k1k2)x2+k2x)=2

 k1k22=2  k1k2=4             ... (ii)

Adding (i) and (ii), we get

k1=3  k2=1

  k12+k22=(3)2+(1)2=9+1=10.



Q 39 :    

Let [x] denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function f(x)=[x]+|x2|,2<x<3, is not continuous and not differentiable Then m + n is equal to :          [2025]

  • 7

     

  • 8

     

  • 6

     

  • 9

     

(2)

Given : f(x)=[x]+|x2|,2<x<3

The function can also be written as follows:

f(x)={x,2<x<1x+1,1x<0x+2,0x<1x+3,1x<2x,2x<3

Here, function f(x) is not continuous at x = –1, 0, 1 and 2.

Hence, function f(x) is not differentiable at x = –1, 0, 1 and 2.

So, we have m = n = 4.

   m + n = 4 + 4 = 8.



Q 40 :    

Let the function f(x)=(x21)|x2ax+2|+cos|x| be not differentiable at the two points x=α=2 and x=β. Then the distance of the point (α, β) from the line 12x + 5y +10 = 0 is equal to :          [2025]

  • 4

     

  • 3

     

  • 2

     

  • 5

     

(*)

We have, 

f(x)=(x21)|x2ax+2|+cos|x|

Now, cos |x| is always differentiable

So, we will check for |x2ax+2| and it is not differentiable at its roots.

It is given that x=α=2

 (2)2a(2)+2=0  42a+2=0  a=3

The other root of x23x+2 is x=1.

Note: There is error in question, f(x) is differentiable at x = 1.