Q 1 :    

A wire of length L and radius r is clamped at one end. If its other end is pulled by a force F, its length increases by l. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become                 [2024]

  • 3 times

     

  • 4 times

     

  • 32 times

     

  • 2 times

     

(D)  Young's modulus, Y=stressstrain=F/Al/L=FLAl

         In case I : Y=FLπr2l                       ...(i)

         In case II : Y=(F/2)Lπ(r2)2l=2FLπr2l              ...(ii)

          From (i) and (ii), FLπr2l=2FLπr2ll=2l

 



Q 2 :    

Young's modulus of material of a wire of length 'L' and cross-sectional area A is Y. If the length of the wire is doubled and cross-sectional area is halved then Young's modulus will be                         [2024]

  • Y/4

     

  • 4Y

     

  • Y

     

  • 2Y

     

(C)    Young's modulus depends on the material not on length and cross-sectional area. So young's modulus remains same.

 



Q 3 :    

With rise in temperature, the Young's modulus of elasticity        [2024]

  • changes erratically

     

  • decreases

     

  • increases

     

  • remains unchanged

     

(B)  Y=F/Al/l=F/AαT as T increases, Y decreases

 



Q 4 :    

A wire of cross-sectional area A, modulus of elasticity 2×1011 Nm-2 and length 2 m is stretched between two vertical rigid supports. When a mass of 2 kg is suspended at the middle, it sags lower from its original position, making an angle θ=1100 radian on the points of support. The value of A is _____ ×10-4 m2 (consider x<<L).          [2024]



(1)

tanθ=xLθ,  As θ is small

2Tsinθ=20    Tθ=10

T·1100=10 T=1000 N

Change in length, ΔL=2x2+L2-2L

 ΔL=2L[1+x22L2-1]=x2L

Stress=Ystrain  TA=YΔL(2L)

TA=Y·x2L(2L)=Y2·(x2L2)=Y2·θ2

1000A=Yθ22=2×10112×1100×100

A=1×10-4 m2



Q 5 :    

Two persons pull a wire towards themselves. Each person exerts a force of 200 N on the wire.

Young’s modulus of the material of the wire is 1×1011 Nm-2. Original length of the wire is 2 m and the area of cross-section is 2 cm2. The wire will extend in length by _____ μm.            [2024]



(20)

FA=YΔΔ=FAY

Δ=200×22×10-4×1011=2×10-5=20μm

 



Q 6 :    

Two metallic wires P and Q have the same volume and are made up of the same material. If their area of cross-sections are in the ratio 4:1 and force F1 is applied to P, an extension of λ is produced. The force required to produce the same extension in Q is F2. The value of F1F2 is _____.    [2024]



(16)

Y=StressStrain=F/AΔ/=FAΔ

Δ=FAY

V=A=VA

Δ=FVA2Y

Y and V is same for both the wires

ΔFA2

Δ1Δ2=F1A12×A22F2

Δ1=Δ2

F1F2=A12A22=(41)2=16



Q 7 :    

Each of three blocks P, Q, and R shown in the figure has a mass of 3 kg. Each of the wires A and B has a cross-sectional area of 0.005 cm2 and Young’s modulus 2×1011 Nm2. Neglecting friction, the longitudinal strain on wire B is _____ ×10-4. (Take g = 10 m/s2).          [2024]



(2)

3g=(3+3+3)aa=39g=13g

Now, 3g-T=3a

T=3(g-a)=3(g-g3)=2g=20N

Y=longitudinal stresslongitudinal strain

longitudinal strain=longitudinal stressY

=TAY=205×10-7×2×1011=2×10-4



Q 8 :    

Two blocks of mass 2 kg and 4 kg are connected by a metal wire going over a smooth pulley as shown in the figure. The radius of the wire is 4.0×10-5 m and Young’s modulus of the metal is 2.0×1011 N/m2. The longitudinal strain developed in the wire is 1απ. The value of α is _______ .

[Use g = 10 m/s2]               [2024]



(12)

T=(2m1m2m1+m2)g=803 N

A=πr2=16π×10-10 m2

Strain=Δ=FAY=TAY

              =80316π×10-10×2×1011=112π

α=12

 



Q 9 :    

One end of a metal wire is fixed to a ceiling, and a load of 2 kg hangs from the other end. A similar wire is attached to the bottom of the load, and another load of 1 kg hangs from this lower wire. Then the ratio of longitudinal strain of the upper wire to that of the lower wire will be _____.

[Area of cross-section of wire = 0.005 cm2, Y = 2×1011 Nm-2 and g = 10 ms-2]   [2024]



(3)

fnet=0

T2=T1+2g=g+2g=3g

T1=g                 ...(i)

(stress)L=Y×(strain)L

(strain)L=stressY=FYA

(strain)upper=T2YA

(strain)lower=T1YA

(strain)upper(strain)lower=T2T1=3gg=3