Q 1 :    

A wire of length L and radius r is clamped at one end. If its other end is pulled by a force F, its length increases by l. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become                 [2024]

  • 3 times

     

  • 4 times

     

  • 32 times

     

  • 2 times

     

(D)  Young's modulus, Y=stressstrain=F/Al/L=FLAl

         In case I : Y=FLπr2l                       ...(i)

         In case II : Y=(F/2)Lπ(r2)2l=2FLπr2l              ...(ii)

          From (i) and (ii), FLπr2l=2FLπr2ll=2l

 



Q 2 :    

Young's modulus of material of a wire of length 'L' and cross-sectional area A is Y. If the length of the wire is doubled and cross-sectional area is halved then Young's modulus will be                         [2024]

  • Y/4

     

  • 4Y

     

  • Y

     

  • 2Y

     

(C)    Young's modulus depends on the material not on length and cross-sectional area. So young's modulus remains same.

 



Q 3 :    

With rise in temperature, the Young's modulus of elasticity        [2024]

  • changes erratically

     

  • decreases

     

  • increases

     

  • remains unchanged

     

(B)  Y=F/Al/l=F/AαT as T increases, Y decreases