Q 1 :

A body of mass 1000 kg is moving horizontally with a velocity 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is      [2024]

  • 6

     

  • 2

     

  • 3

     

  • 5

     

(4)  

        Momentum will remain conserve

        1000×6=1200×v

          v=5m/s

 



Q 2 :

A stationary particle breaks into two parts of masses mA and mB, which move with velocities vA and vB respectively. The ratio of their kinetic energies (KB:KA) is             [2024]

  • mB:mA

     

  • 1:1

     

  • mBvB:mAvA

     

  • vB:vA

     

(4)

By conservation of linear momentum

0=mAVA+mBVB

mAVA=-mBVB

mAVA=mBVB

K=P22mK1m

KBKA=mAmBKBKA=vBvA



Q 3 :

A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of 2:1. After disintegration, they will move   [2024]

  • in opposite directions with speed in the ratio of 1:2 respectively

     

  • in opposite directions with speed in the ratio of 2:1 respectively

     

  • in the same direction with the same speed.

     

  • in opposite directions with the same speed.

     

(1)

From conservation of momentum

Pi=Pf

0=mv1-2mv2

v1v2=21, move in opposite direction with speed ratio 1 : 2.



Q 4 :

Consider two blocks A and B of masses m1 = 10 kg and m2 = 5 kg that are placed on a frictionless table. The block A moves with a constant speed v = 3 m/s towards the block B kept at rest. A spring with spring constant k = 3000 N/m is attached with the block B as shown in the figure. After the collision, suppose that the blocks A and B, along with the spring in constant compression state, move together, then the compression in the spring is, (Neglect the mass of the spring)         [2025]

  • 0.2 m

     

  • 0.4 m

     

  • 0.1 m

     

  • 0.3 m

     

(3)

Conservation of Linear momentum,

m1v1+m2v2=(m1+m2)vcm

vcm 10×310+5  3015=2 m/s 

Conservation of mechanical energy,

12kx2=12(10)(3)2[12(15)(2)2]

 3000x2=9060=30

 x2=303000=1100

 x=110m



Q 5 :

A machine gun of mass 10 kg fires 20 g bullets at the rate of 180 bullets per minute with a speed of 100 ms-1 each. The recoil velocity of the gun is       [2023]

  • 0.02 m/s

     

  • 2.5 m/s

     

  • 1.5 m/s

     

  • 0.6 m/s

     

(4)

20×10-3×18060×100=10 V

v=0.6 m/s



Q 6 :

100 balls each of mass m moving with speed v simultaneously strike a wall normally and reflected back with same speed, in time t s. The total force exerted by the balls on the wall is                [2023]

  • 100mvt

     

  • 200mvt

     

  • 200mvt

     

  • mv100t

     

(2)

Pi=Nmvi^,   Pf=-Nmvi^

N is the number of balls striking the wall

[IMAGE 41]------------------

N=100

ΔP=Pf-Pi=-2Nmvi^=-200Nmvi^

Ftotal=ΔPΔt=-200mvtt

|F|=200mvt



Q 7 :

The figure represents the momentum--time (p-t) curve for a particle moving along an axis under the influence of a force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively, if (t3-t2)<t1.                   [2023]

[IMAGE 42]

  • c and a

     

  • b and c

     

  • c and b

     

  • a and b

     

(3)

|dpdt|=|F| dpdt=slope of curve

Maximum slope: (c)

Minimum slope: (b)



Q 8 :

A body of mass 5 kg is moving with a momentum of 10 kg ms-1. Now a force of 2 N acts on the body in the direction of its motion for 5 s. The increase in the kinetic energy of the body is ________ J.                  [2023]



(30)

Given: M=5 kg

Pi=10 kg m/s  (initial momentum)

Impulse=FΔt=ΔP=Pf-Pi

2×5=Pf-10

Pf=20kg m/s  (final momentum)

Increase in KE=KEf-KEi

=Pf22m-Pi22m=4002×5-1002×5=40-10=30 J