Q 1 :    

A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate is n9. The value of n is _____.          [2024]



(15)

m1x1+m2x2=m3x3

10x1+2(1.5)=12(1.5)x1=1.5 cm

m1y1+m2y2=m3y3

10y1+2(1.5)=12×1y1=0.9 cm

x1y1=1.50.9=159n=15

 



Q 2 :    

The identical spheres, each of mass 2M, are placed at the corners of a right-angled triangle with mutually perpendicular sides equal to 4 m each. Taking the point of intersection of these two sides as the origin, the magnitude of the position vector of the center of mass of the system is 42x, where the value of x is ______. [2024]



(3)

Position vector rCOM=m1r1+m2r2+m3r3m1+m2+m3

rCOM=2M×0+2M×4i^+2M×4j^6M

r=43i^+43j^

|r|=(43)2+(43)2=432=42x

x=3



Q 3 :    

Consider a circular disc of radius 20 cm with centre located at the origin. A circular hole of a radius 5 cm is cut from this disc in such a way that the edge of the hole touches the edge of the disc. The distance of centre of mass of residual or remaining disc from the origin will be:          [2025]

  • 2.0 cm

     

  • 0.5 cm

     

  • 1.5 cm

     

  • 1.0 cm

     

(4)

M  A

xcm=m1x1+m2x2m1+m2

          =A(0)+(A16)(15)AA16

          =15161=1 cm



Q 4 :    

The centre of mass of a thin rectangular plate (fig) with sides of length a and b, whose mass per unit area (σ) varies as σ=σ0xab (where σ0 is a constant), would be ______.          [2025]

  • (23a,b2)

     

  • (23a,23b)

     

  • (a2,b2)

     

  • (13a,b2)

     

(1)

σ is constant in y-direction, so, ycm=b/2

xcm=0axdm0adm=0axσxdA0aσxdA=0axσ0xabbdx0aσ0xabbdx

xcm=0ax2dx0axdx=(x33)0a(x22)0a=a3/3a2/2=2a3

i.e.rcom(2a3,b2)



Q 5 :    

A rod of length 5L is bent right angle keeping one side length as 2L. The position of the centre of mass of the system: (Consider L = 10 cm)          [2025]

  • 2i^+3j^

     

  • 3i^+7j^

     

  • 5i^+8j^

     

  • 4i^+9j^

     

(4)

xcom=2m(10)+3m(0)5m=4 cm

ycom=2m(0)+3m(15)5m=9 cm

rcom=(4i^+9j^) cm