Q 1 :    

The equation of stationary wave is:                                                     [2024]

 

y=2asin(2πntλ)cos(2πxλ).

 

Which of the following is not correct?

  • The dimensions of x is [L]

     

  • The dimensions of nt is [L]

     

  • The dimensions of n is [LT-1]

     

  • The dimensions of n/l is [T]

     

(D)  y=2asin(2πntλ)cos(2πxλ)

      (i) [x]=L

      (ii) [2πntλ]=1[nt]=1·[λ]=L

      (iii) [nt]=L[n]=LT-1

      (iv) [nλ]=LT-1L=T-1

 



Q 2 :    

Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period, G is gravitational constant, M is mass, r is radius of orbit.                                                      [2024]

  • T2=4π2r3GM

     

  • T2=4π2r2GM

     

  • T2=4π2r3

     

  • T2=4π2rGM2

     

(A) According to principle of homogeneity dimension of LHS should be equal to dimensions of RHS. [T2]=T2,

     Dimension of G is [M-1L3T-2]

      Now,

      (1) [4π2r3GM]=L3M-1L3T-2M1=T2

      (2) [4π2r2GM]=L2M-1L3T-2M1=L-1T2

      (3) [4π2r3]=L3

      (4) [4π2rGM2]=LM-1L3T-2M2=M-1L-2T2

 



Q 3 :    

If G be the gravitational constant and u be the energy density then which of the following quantity have the dimensions as that of the uG.        [2024]

  • Force per unit mass

     

  • Gravitational potential

     

  • pressure gradient per unit mass

     

  • Energy per unit mass

     

(A)  [uG]=[(M1L-1T-2)(M-1L3T-2)]

       [uG]=[M0L2T-4]

       [uG]=[L1T-2]

 



Q 4 :    

What is the dimensional formula of ab-1 in the equation (P+aV2)(V-b)=RT, where letters have their usual meaning.        [2024]

  • [M6L7T4]

     

  • [ML2T-2]

     

  • [M-1L5T3]

     

  • [M0L3T-2]

     

(B) [V]=[b] It means the dimension of b=[L3]

      [P]=[aV2][a]=[PV2]=[ML-1T-2][L6]

      Dimension of a=[ML5T-2]

         ab-1=[ML5T-2][L3]=[ML2T-2]

 



Q 5 :    

Match List-I with List-II:                                                        [2024]

                List I              List II
A Torque (I) [M1L2T-2A-2]
B Magnetic Field (II) [L2A1]
C Magnetic moment (III) [M1T-2A-1]
D Permeability of free space (IV) [M1L2T-2]

 

Choose the correct answer from the options given below:

  • A-III, B-l, C-II, D-IV

     

  • A-IV, B-II, C-III, D-I

     

  • A-IV, B-III, C-II, D-I

     

  • A-I, B-III, C-II, D-IV

     

(C) [τ]=[r×F]=[ML2T-2]

      [B]=[MLT-2ATLT-1]=[MA-1T-2]

      [M]=[I×A]=[AL2]

      B=μ04π Idl sinθr2[μ]=[Br2Idl]

      [μ]=[MT-2 A-1×L2AL]=[MLT-2 A-2]



Q 6 :    

Given below are two statements:                                                                [2024]

 

Statements (I): Dimensions of specific heat is [L2T-2K-1]

 

Statements (Il): Dimensions of gas constant is [ML2T-1K-1]

 

In the light of the above statements choose the most appropriate answer from the options given below:

  • Both statement (I) and statement (lI) are correct

     

  • Statement (I) is incorrect but statement (II) is correct

     

  • Statement (I) is correct but statement (II) is incorrect

     

  • Both statement (I) and statement (II) are incorrect

     

(C)  Specific heat, s=QmT=[ML2T-2][MK]=[L2T-2K-1]

       Statement-(I) is correct

       PV=nRTR=PVnT

       [R]=[ML-1T-2][L3][mol][K]

       [R]=[ML2T-2mol-1K-1]

      Statement-II is incorrect



Q 7 :    

If 0 is the permittivity of free space and E is the electric field, then 0E2 has the dimensions                                [2024]

  • [M0L-2TA]

     

  • [ML-1T-2]

     

  • [M-1L-3T4A2]

     

  • [ML2T-2]

     

(B)  Energy per unit volume = 120E2

       120E2[ML-1T-2]=0E2



Q 8 :    

The dimensional formula of latent heat is                                 [2024]

  • [M0LT-2]

     

  • [MLT-2]

     

  • [M0L2T-2]

     

  • [ML2T-2]

     

(C)  Q=mL.[L]=[Q][m]

       [L]=[ML2T-2M]=[M0L2T-2]



Q 9 :    

The de-Broglie wavelength associated with a particle of mass m and energy E is h/2mE. The dimensional formula for Planck's constant is                [2024]

  • [ML-1T-2]

     

  • [ML2T-1]

     

  • [MLT-2]

     

  • [M2L2T-2]

     

(B)  Given λ=h2mE

        h=λ2mE or h=λp

         So dimensional formula of Planck's constant

         [h]=[length][Mass×velocity]

          =[L1][M1L1T-1]=[ML2T-1]



Q 10 :    

Given below are two statements:                                                              [2024]

 

Statement (I): Planck's constant and angular momentum have same dimensions.

 

Statement (II): Linear momentum and moment of force have same dimensions.

 

In the light of the above statements, choose the correct answer from the options given below:

 

  • Statement I is true but Statement II is false

     

  • Both Statement I and Statement II are false

     

  • Both Statement I and Statement II are true

     

  • Statement I is false but Statement II is true

     

(A)  [h]=ML2T-1

       [L]=ML2T-1

       [P]=MLT-1

       [τ]=ML2T-2

       (Here h is Planck's constant, L is angular momentum, P is linear momentum and τ is moment of force)