Q 1 :    

A long straight wire of length 2 m and mass 250 g is suspended horizontally in a uniform horizontal magnetic field of 0.7 T. The amount of current flowing through the wire will be (g=9.8 m s-2)                 [2023]
 

  • 2.45 A

     

  • 2.25 A

     

  • 2.75 A

     

  • 1.75 A

     

(4)

[IMAGE 205]

Weight of the wire, F=mg                            ...(i)

Force acting on the current carrying wire, F=I(l×B)            ...(ii)

Equating eq(i) and (ii)

mg=IlBsin90°

mg=IlB

I=mglB=250×10-3×9.82×0.7

I=1.75 A



Q 2 :    

A wire carrying a current I along the positive x-axis has length L. It is kept in a magnetic field B=(2i^+3j^-4k^)T. The magnitude of the magnetic force acting on the wire is  [2023]
 

  • 5IL

     

  • 3IL

     

  • 3IL

     

  • 5IL

     

(1)

Given  B=(2i^+3j^-4k^)T

F=IL×B=ILi^×(2i^+3j^-4k^)  ;  F=3ILk^+4ILj^  ;  F=5IL



Q 3 :    

In the product F=q(v×B)=qv×(Bi^+Bj^+B0k^)

For q=1 and v=2i^+4j^+6k^ and F=4i^-20j^+12k^

What will be the complete expression for B ?                                    [2021]

 

  • 6i^+6j^-8k^

     

  • -8i^-8j^-6k^

     

  • -6i^-6j^-8k^

     

  • 8i^+8j^-6k^

     

(3)

Given: v=2i^+4j^+6k^ and q=1;  B=Bi^+Bj^+B0k^

F=4i^-20j^+12k^

Now, v×B=|i^j^k^246BBB0|

=i^(4B0-6B)-j^(2B0-6B)+k^(2B-4B)

Force  F=q(v×B)

4i^-20j^+12k^=1  [(4B0-6B)i^-(2B0-6B)j^-2Bk^]

By comparison:

      4B0-6B=4                                  ...(i)

        -2B=12 

B=-6                                              ...(ii)

From eqn. (i) and (ii), 4B0-6(-6)=4

4B0+36=44B0=-32B0=-8

So,  B=-6i^-6j^-8k^



Q 4 :    

A metallic rod of mass per unit length 0.5 kg m-1 is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is   [2018]
 

  • 7.14 A

     

  • 5.98 A

     

  • 14.76 A

     

  • 11.32 A

     

(4)

[IMAGE 206]

Mass per unit length of a metallic rod is ml=0.5 kg m-1.

Let I be the current flowing.

For equilibrium, mgsin30°=IlBcos30°

I=mglBtan30°=0.5×9.80.25×3=11.32A