Q 1 :    

The co-ordinates of a particle moving in x-y plane is given by x=2+4t,y=3t+8t2

The motion of the particle is                                                                                      [2024]

  • uniform motion along a straight line

     

  • uniformly accelerated having motion along a parabolic path

     

  • non-uniformly accelerated

     

  • uniformly accelerated having motion along a straight line

     

(B)  Given, x=2+4t and y=3t+8t2

      vx=dxdt=4= constant, hence ax=0

      and vy=3+16t also, dvydt=ay=16

     the motion will be uniformly accelerated motion.

     Also, t=x-24

      y=3(x-24)+8(x-24)2

      This is a quadratic equation so path will be parabola, parabolic path.



Q 2 :    

Position of an ant (S in metres) moving in Y-Z plane is given by S=2t2j^+5k^ (where t is in second). The magnitude and direction of velocity of the ant at t=1 s will be                                                       [2024]

  • 16 m/s in y-direction

     

  • 4 m/s in x-direction

     

  • 9 m/s in z-direction

     

  • 4 m/s in y-direction

     

(D)

 



Q 3 :    

A particle starts from origin at t=0 with a velocity 5i^ m/s and moves in x-y plane under action of a force which produces a constant acceleration of (3i^+2j^)m/s2. If the x-coordinate of the particle at that instant is 84 m, then the speed of the particle at this time is αm/s. The value of α is ____________ .                 [2024]



(673)        Given, ux=5 m/s,ax=3 m/s2 and x=84 m

                 Using, vx2-ux2=2ax

                 vx2-25=2(3)(84)vx=23m/s

                 vx-ux=axtt=23-53=6s

                 vy=0+ayt=0+2×(6)=12m/s

                  v2=vx2+vy2=232+122=673

                 v=673m/s