Q 11 :

For the two positive numbers a,b, if a,b and 118 are in a geometric progression, while 1a, 10 and 1b are in an arithmetic progression, then 16a+12b is equal to ________ .           [2023]



(3)

a,b,118 are in G.P. b2=a18

a=18b2                       ...(i)

1a, 10, 1b are in A.P. 20=1a+1b

a+b=20ab 18b2+b=20·18b2b  [using (i)]

18b+1=360b2 360b2-18b-1=0

360b2-30b+12b-1=0 (30b+1)(12b-1)=0

which gives b=112  (Taking only positive value)

So, a=18.

Hence, 16a+12b=16×18+12×112=2+1=3.



Q 12 :

Let a1,a2,a3,..... be a GP of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then a1a9+a2a4a9+a5+a7 is equal to________ .               [2023]



(60)

Given, a4·a6=9

(a5)2=9a5=3 and a5+a7=24

a5+a5r2=24a5(1+r2)=24

(1+r2)=8r=7a1=349

So, a1a9+a2a4a9+a5+a7=9+27+3+21=60



Q 13 :

Let {ak} and {bk} k, be two G.P.s with common ratios r1 and r2 respectively such that a1=b1=4 and r1<r2. Let ck=ak+bk, k. If c2=5 and c3=134 then k=1ck-(12a6+8b4) is equal to ________ .           [2023]



(9)

Given, ck=ak+bk

         a1=b1=4

Now, a2=4r1          a3=4r12

          b2=4r2          b3=4r22

Now, c2=a2+b2=5

          c3=a3+b3=134

r1+r2=54  and  r12+r22=136

So, r1r2=38  which gives r1=12, r2=34

k=1ck-(12a6+8b4) =41-r1+41-r2-(4832+272)

                                         =24-15=9



Q 14 :

Let the first three terms 2,p and q, with q2, of a G.P. be respectively the 7th, 8th and 13th terms of an A.P. If the 5th term of the G.P. is the nth term of the A.P., then n is equal to               [2024]

  • 177

     

  • 151

     

  • 169

     

  • 163

     

(4)

Since, 2,p and q are in G.P.

     p2=2q                                                              ...(i)

Let first term of the A.P. be a and common difference be d.

    T7=a+6d=2                                               ...(ii)

T8=a+7d=p                                                         ...(iii)

and T13=a+12d=q                                            ...(iv)

      From (ii) and (iii), we get d=p-2

From (ii) and (iv), we get 6d=q-26(p-2)=q-2

6p=q+10                                                             ...(v)

From (i) and (v), we get p=2 or p=10       q=2 or 50

But q2

Hence, p=10,q=50       d=8 and a=-46

Since, 5th term of G.P. =nth term of A.P.

     2(102)4=-46+(n-1)8

1250=-46+8n-88n=1304n=163

 



Q 15 :

In an increasing geometric progression of positive terms, the sum of the second and sixth terms is 703 and the product of the third and fifth terms is 49. Then the sum of the 4th, 6th, and 8th terms is equal to          [2024]

  • 78

     

  • 96

     

  • 84

     

  • 91

     

(4)

Let the G.P. be ar3,ar2,ar,a,ar,ar2,ar3,ar4

Now, ar2+ar2=703                                                              ...(i)

and ar×ar=49a2=49a=7        (G.P. is increasing)

Now, 7r2+7r2=703                    [Using (i)]

3r4-10r2+3=0

(3r2-1)(r2-3)=0r2=13 or r2=3

As the G.P. is increasing,    r2=3r=3

Now, a+ar2+ar4=7+7(3)+7(9)=91

 



Q 16 :

Let a,ar,ar2, be an infinite G.P. If n=0arn=57 and n=0a3r3n=9747, then a+18r is equal to            [2024]

  • 38

     

  • 46

     

  • 31

     

  • 27

     

(3)

Given, n=0arn=57

a1-r=57                                                      ...(i)

                                                         [Sum of infinite G.P.]

Also, n=0a3r3n=9747

i.e., a3+a3r3+=9747

a31-r3=9747(57(1-r))31-r3=9747

(1-r)(1+r+r2)(1-r)3=1919(1-r)2=1+r+r2

19+19r2-38r=1+r+r2

18r2-39r+18=0

r=23,32r=23                [|r|<1]

      a=57(1-23)a=19

So, a+18r=19+12=31

 

 



Q 17 :

Let 3, a,b,c be in A.P. and 3, a-1,b+1,c+9 be in G.P. Then, the arithmetic mean of a,b and c is                [2024]

  • 13

     

  • -4

     

  • -1

     

  • 11

     

(4)

Given that 3, a,b,c, are in A.P.

So, a-3=b-a

2a=b+3                                                   ...(i)

and b-a=c-b

2b=a+c                                                     ...(ii)

Also, given that 3, a-1,b+1,c+9 are in G.P.

So, a-13=b+1a-1

(a-1)2=3b+3a2-2a+1=3b+3

a2-2a=3(2a-3)+2                                     (Using (i))

a2-8a+7=0a2-7a-a+7=0

a(a-7)-1(a-7)=0

(a-1)(a-7)=0a=1,7

By (i), b=-1 and b=11

Since, b cannot be negative.

By (ii), c=15

    A.M. of a,b,c=a+b+c3=15+11+73=333=11



Q 18 :

Let α and β be the roots of the equation px2+qx-r=0, where p0. If p,q and r be the consecutive terms of a non constant G.P. and 1α+1β=34, then the value of (α-β)2 is:                           [2024]

  • 8

     

  • 9

     

  • 203

     

  • 809

     

(4)

We have, 

α+β=-qp               ...(i) and                 αβ=-rp               ...(ii)

Now, 1α+1β=34α+βαβ=34qr=34rq=43

   p,q and r are in G.P       qp=rq=43

So, α+β=-43 and αβ=-(rq)2=-169

Now, (α-β)2=(α+β)2-4αβ=169+649=809



Q 19 :

If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P., then the common ratio of the G.P. is equal to      [2024]

  • 7

     

  • 4

     

  • 5

     

  • 6

     

(4)

Sum of 64 terms = 7 × Sum of odd terms

a+ar+ar2++ar63=7(a+ar2+ar4++ar62)

1+r+r2++r63=7(1+r2+r4++r62)

1(1-r64)1-r=7×(1-(r2)32)1-r21-r64(1-r)=7×(1-r64)(1-r)(1+r)

1+r=7r=6

 



Q 20 :

If each term of a geometric progression a1,a2,a3, with a1=18 and a2a1, is the arithmetic mean of the next two terms and Sn=a1+a2++an, then S20-S18 is equal to          [2024]

  • -215

     

  • 218

     

  • 215

     

  • -218

     

(1)

Let r be the common ratio.

Now, an=A.M. of an+1 and an+2=an+1+an+22

a1·rn-1=12[a1·rn+a1·rn+1]2rn-1=rn+rn+1

2=r+r2r2+r-2=0(r+2)(r-1)=0

r=-2  (r1as a1a2)

Now, S20-S18=a19+a20  ( Sn=a1+a2++an)

=18·r18+18·r19=18(-2)18[1-2]=-21823=-215