Q 11 :    

If the range of f(θ)=sin4θ+3cos2θsin4θ+cos2θ, θR is [α,β], then the sum of the infinite G.P., whose first term is 64 and the common ratio is αβ, is equal to _______.          [2024]



(96)

We have, f(θ)=sin4θ+3cos2θsin4θ+cos2θ

=1+2cos2θsin4θ+cos2θ=1+2cos2θ1+cos4θ-cos2θ

=1+21cos2θ+cos2θ-1

Now, cos2θ+1cos2θ2                      [A.M.G.M.]

1cos2θ+cos2θ-11cos2θ+1cos2θ-1[1,)

1cos2θ+1cos2θ-1(0,1]

When cosθ=0,f(θ)=1

    f(θ)[1,3]α=1,β=3

Sum of infinite G.P. with first term 64 and common ratio

13=641-13=32×3=96



Q 12 :    

If three successive terms of a G.P. with common ratio r(r>1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r]+[-r] is equal to ______.                   [2024]



(1)

Let a,ar and ar2 be the three sides of the triangle. 

Now, a+ar>ar2

r2-r-1<0r(1-52,1+52)

So, 3[r]+[-r]=3+(-2)=1



Q 13 :    

If 8=3+14(3+p)+142(3+2p)+143(3+3p)+, then the value of p is _______ .               [2024]



(9)

8=3+1(4)(3+p)+1(4)2(3+2p)+1(4)3(3+3p)+          ...(i)

Multiplying both sides by 14, we get  2=34+3+p(4)2+3+2p(4)3++                                       ...(ii)

Subtracting (ii) from (i), we get 6=3+p4+p42+

3=p[14+1(4)2+1(4)3++]

3=p[141-14]                    [ S=a1-r for infinite geometric series ]

3=p[14×43]p=9



Q 14 :    

Let the coefficient of xr in the expansion of (x+3)n-1+(x+3)n-2(x+2)+(x+3)n-3(x+2)2++(x+2)n-1 be αr. If r=0nαr=βn-γn,β,γN, then the value of β2+γ2 equals ______ .                    [2024]



(25)

We have, 

(x+3)n-1+(x+3)n-2(x+2)+(x+3)n-3(x+2)2++(x+2)n-1

   r=0nαr=4n-1+4n-2×3+4n-3×32++3n-1

=4n-1[1+34+(34)2++(34)n-1]

=4n-1×1-(34)n1-34=4n-1(1-(34)n)(4)

=4n-3n=β-γb=4,γ=3

    β2+γ2=16+9=25