Q 11 :    

If the range of f(θ)=sin4θ+3cos2θsin4θ+cos2θ, θR is [α,β], then the sum of the infinite G.P., whose first term is 64 and the common ratio is αβ, is equal to _______.          [2024]



(96)

We have, f(θ)=sin4θ+3cos2θsin4θ+cos2θ

=1+2cos2θsin4θ+cos2θ=1+2cos2θ1+cos4θ-cos2θ

=1+21cos2θ+cos2θ-1

Now, cos2θ+1cos2θ2                      [A.M.G.M.]

1cos2θ+cos2θ-11cos2θ+1cos2θ-1[1,)

1cos2θ+1cos2θ-1(0,1]

When cosθ=0,f(θ)=1

    f(θ)[1,3]α=1,β=3

Sum of infinite G.P. with first term 64 and common ratio

13=641-13=32×3=96



Q 12 :    

If three successive terms of a G.P. with common ratio r(r>1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r]+[-r] is equal to ______.                   [2024]



(1)

Let a,ar and ar2 be the three sides of the triangle. 

Now, a+ar>ar2

r2-r-1<0r(1-52,1+52)

So, 3[r]+[-r]=3+(-2)=1



Q 13 :    

If 8=3+14(3+p)+142(3+2p)+143(3+3p)+, then the value of p is _______ .               [2024]



(9)

8=3+1(4)(3+p)+1(4)2(3+2p)+1(4)3(3+3p)+          ...(i)

Multiplying both sides by 14, we get  2=34+3+p(4)2+3+2p(4)3++                                       ...(ii)

Subtracting (ii) from (i), we get 6=3+p4+p42+

3=p[14+1(4)2+1(4)3++]

3=p[141-14]                    [ S=a1-r for infinite geometric series ]

3=p[14×43]p=9



Q 14 :    

Let the coefficient of xr in the expansion of (x+3)n-1+(x+3)n-2(x+2)+(x+3)n-3(x+2)2++(x+2)n-1 be αr. If r=0nαr=βn-γn,β,γN, then the value of β2+γ2 equals ______ .                    [2024]



(25)

We have, 

(x+3)n-1+(x+3)n-2(x+2)+(x+3)n-3(x+2)2++(x+2)n-1

   r=0nαr=4n-1+4n-2×3+4n-3×32++3n-1

=4n-1[1+34+(34)2++(34)n-1]

=4n-1×1-(34)n1-34=4n-1(1-(34)n)(4)

=4n-3n=β-γb=4,γ=3

    β2+γ2=16+9=25



Q 15 :    

Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is the sum of areas of all the triangles formed in this process, then:                 [2024]

  • P2=63Q

     

  • P2=723Q

     

  • P2=363Q

     

  • P=363Q2

     

(3)

ABC is an equilateral triangle of side 'a' unit.

Perimeter of ABC=3a

Area of ABC=34a2

Now, DEF is made by joining midpoints of the sides of ABC

    DE=EF=DF=a2

Perimeter of DEF=3a2

Area of DEF=34×a24=316a2

   P=3a+3a2+3a4+

=3a[1+12+122+]=3a1-12=6a

Now, Q=34a2[1+14+142+]=34a21-14=43×34a2

=13a2=13(P6)2                   [ P=6a]

363Q=P2



Q 16 :    

Let a1,a2,a3,... be a G.P. of increasing positive numbers. If a3a5=729 and a2+a4=1114, then 24(a1+a2+a3) is equal to           [2025]

  • 131

     

  • 129

     

  • 128

     

  • 130

     

(2)

Let a be the first term and r be the common ratio of GP respectively.

Given, a3a5=729  ar2·ar4=729

 a2r6=729  ar3=27          ... (i)

and a2+a4=ar+ar3=1114

 ar+27=1114  ar=34          ... (ii)

Now, divide equation (i) by equation (ii), we get

   ar3ar=273/4

 r2=36  r=6          [ G.P. of an increasing series]

Substituter r = 6 in equation (ii), we get

           a=18

Now,   24(a1+a2+a3)

       =24(a+ar+ar2)

       =24a(1+r+r2)

       =24×18(1+6+36)

         = 3(43) = 129.



Q 17 :    

Let x1,x2,x3,x4 be in a geometric progression. If 2, 7, 9, 5 are subtracted respectively from x1,x2,x3,x4, then the resulting numbers are in an arithmetic progression. Then the value of 124(x1x2x3x4) is :          [2025]

  • 36

     

  • 216

     

  • 72

     

  • 18

     

(2)

Given, x1,x2,x3,x4 be in a G.P.

x1=a, x2=ar, x3=ar2, x4=ar3

According to question

a2, ar7, ar29, ar35 are in A.P.

So, 2(ar7)=a2+ar29          ... (i)

       2(ar29)=a7+ar35          ... (ii)

Solving (i) and (ii), we get r = 2, a = – 3

Product =x1x2x3x4=a4r6=81×64=5184

   The value of 124(x1x2x3x4)=(5184)24=216.



Q 18 :    

If the sum of the second, fourth and sixth terms of a G.P. of positive terms is 21 and the sum of its eight, tenth and twelfth terms is 15309, then the sum of its first nine terms is :          [2025]

  • 760

     

  • 755

     

  • 750

     

  • 757

     

(4)

We have, ar+ar3+ar5=21, ar7+ar9+a11=15309

 ar(1+r2+r4)=21          ... (i)

and ar7(1+r2+r4)=15309         ... (ii)

Divide equation (ii) by (i), we get

      a·r7ar=1530921  r6=729

 r=3 and a=791

Now, S9=a·(r91r1

               =791(196831)2

               =7×1968291×2

               =984113=757.



Q 19 :    

Let a1,a2,a3, ..... be a G.P. of increasing positive terms, If a2a5=28 and a2a4=29, then a6 is equal to :          [2025]

  • 812

     

  • 526

     

  • 784

     

  • 628

     

(3)

Here, r > 0 and a1,a2,a3, .....>0 as G.P. has increasing positive terms.

       a1a5=28          (Given)

 a(ar4)=28=a2a4=28          ... (i)

Also, a2+a4=29

 ar+ar3=29

 ar(1+r2)=29          ... (i)

From (i) and (ii), we get

r2(1+r2)2=28(29)2

841r2=28r4+56r2+28

 28r4785r2+28=0

 (r228)(28r21)=0

 r2=28 or 128

 r=28          [ r128 as G.P. is increasing]

 a=128 and a6=ar5=128×(28)5=784.



Q 20 :    

Let <an> be a sequence such that a0=0,a1=12 and 2an+2=5an+13an, n=0,1,2,3,.... Then k=1100ak is equal to .          [2025]

  • 3a99100

     

  • 3a100100

     

  • 3a100+100

     

  • 3a99+100

     

(2)

We have, a0=0, a1=12 and 2an+2=5an+13an

Let 2x2=5x3

 2x25x+3=0   (2x3)(x1)=0

 x=1, 32              an=A(1)n+B(32)n

Put n = 0; A + B

n=1; 12=A+32B  B=1, A=1

 an=(1)+(32)n

 k=1100ak=k=1100(1)+(32)k

       = 100+(32)((32)1001)(321)

 100+[3((32)1001)]

=3a100100.