Topic Question Set


Q 1 :    

All the letters of the word PUBLIC are written in all possible orders and these words are written as in a dictionary with serial numbers. Then the serial number of the word PUBLIC is                      [2023]

  • 580

       

  • 582 

     

  • 576 

     

  • 578

     

(2)

No. of words formed when word starts from B = 5!

No. of words formed when word starts from C = 5!

No. of words formed when word starts from I = 5!

No. of words formed when word starts from L = 5!

No. of words formed when word starts from PB = 4!

No. of words formed when word starts from PC = 4!

No. of words formed when word starts from PI = 4!

No. of words formed when word starts from PL = 4!

No. of words formed when word starts from PUBC = 2!

No. of words formed when word starts from PUBI = 2!

No. of words formed when word starts from PUBLC = 1

Now, the word comes is PUBLIC = 1

∴ Serial number of word PUBLIC

= 4 × 5! + 4 × 4! + 2 × 2! + 1 + 1 = 582



Q 2 :    

The number of arrangements of the letters of the word "INDEPENDENCE" in which all the vowels always occur together is

  • 14800

     

  • 16800

     

  • 18000 

     

  • 33600

     

(2)

 



Q 3 :    

The number of ways in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is            [2023]

  • 7(360)2

     

  • 126(5!)2

     

  • 7(720)2

     

  • 720

     

(2)

[IMAGE 17]

Number of girls = 5

Number of boys = 7

The number of ways of arranging boys around a table is (7 – 1)! = 6!

Now, there are 7 spaces in between two boys, so 5 girls arranged in 7 gaps by P57 ways.

So, required number of ways = 6!×P57=126×(5!)2



Q 4 :    

If the number of words, with or without meaning. which can be made using all the letters of the word MATHEMATICS in which C and S do not come together, is (6!)k, then k is equal to             [2023]

  • 5670

     

  • 945 

     

  • 2835 

     

  • 1890

     

(1)

In the word ''MATHEMATICS'' there are, 2M's; 2A's; 2T's

Total number of words formed by the letters of the word ''MATHEMATICS'' is 112×2×2

Number of words in which 'C' and 'S' come together is 102×2×2×2

Then, number of words in which 'C' and 'S' do not come together is 112×2×2-2102×2×2=9×102×2×2

9×10×9×8×7×6!2×2×2=6!×k  (Given)k=5670



Q 5 :    

Eight persons are to be transported from city A to city B in three cars of different makes. If each car can accommodate at most three persons, then the number of ways, in which they can be transported, is                 [2023]

  • 3360

     

  • 1120

     

  • 1680 

     

  • 560

     

(3)

8 persons can be divided into 3 groups of 3, 3, and 2 members each. 

  Required number of ways=8!3!3!2!3!×3!

=8×7×6×5×44=56×30=1680

 



Q 6 :    

If the letters of the word MATHS are permuted and all possible words so formed are arranged as in a dictionary with serial numbers, then the serial number of the word THAMS is             [2023]

  • 103 

     

  • 104 

     

  • 101

     

  • 102

     

(1)

Given word is MATHS.

In alphabetical order: A, H, M, S, T

Now, word starting with

A_ _ _ _ i.e., 4! ; H_ _ _ _  i.e., 4!

M_ _ _ _ i.e., 4! ; S_ _ _ _  i.e., 4!

T A_ _ _  i.e., 3! ; T H A M S i.e., 1

   Rank of the word THAMS=4×4!+1×3!+1=103



Q 7 :    

If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315th position in this arrangement is                [2024]

  • NRAPGU

     

  • NRAGPU

     

  • NRAPUG

     

  • NRAGUP

     

(1)

Letter in the word NAGPUR = 6

If we fix A _ _ _ _ _

Number of words start with A = 5! = 120

If we fix G _ _ _ _ _

Number of words start with G = 5! = 120

If we fix N A _ _ _ _

Number of words start with NA = 4! = 24

If we fix N G _ _ _ _

Number of words start with NG = 4! = 24

If we fix N P _ _ _ _

Number of words start with NP = 4! = 24

Next word i.e., 313th word in dictionary will be NRAGPU314th word will be NRAGUP315th word will be NRAPGU.



Q 8 :    

60 words can be made using all the letters of the word BHBJO, with or without meaning. If these words are written as in a dictionary, then the 50th word is                      [2024]

  • OBBJH

     

  • HBBJO

     

  • OBBHJ

     

  • JBBOH

     

(1)

Let us fix B first (Dictionary Order)

B _ _ _ _    (We have 4 distinct letters left, to be arranged in 4 distinct ways)
Number of ways = 4! = 24

H _ _ _ _   (We have B, B, J, O to be arranged in 4 ways when H is fixed)

Number of ways = 4!2!=12

J _ _ _ _    (B, B, H, O to be arranged in 4 ways)

Number of ways = 4!2!=12

49th word will be OBBHJ
50th word will be OBBJH

 



Q 9 :    

If n is the number of ways in which five different employees can sit into four indistinguishable offices where any office may have any number of persons including zero, then n is equal to                     [2024]

  • 43

     

  • 47

     

  • 53

     

  • 51

     

(4)

Number of ways in which five different employees can sit are

I              II              III             IV

                                 

5             0               0                0             5!/5! = 1

4             1               0                0             5!/4! = 5

3             2               0                0            5!/3!2! = 10

3             1               1                0             5!/3! 1! 1! 2! = 10

2             2               1                0             5!2!2!1!2!=15

2            1                1                1              5!2!1!1!1!3!=10

        Total number of ways =1 + 5 + 10 + 10 + 15 + 10 = 51

 



Q 10 :    

Let α=(4!)!(4!)3! and β=(5!)!(5!)4!. Then

  • αN and βN

     

  • αN and βN

     

  • αN and βN

     

  • αN and βN

     

(3)