Q 11 :    

Let aR and A be a matrix of order 3×3 such that det(A)=4 and A+I=[1a1210a12], where I is the identity matrix of order 3×3. If det((a + 1) adj((a – 1A)) is m, n{0,1,2,...,20}, then m + n is equal to :          [2025]

  • 16

     

  • 17

     

  • 15

     

  • 14

     

(1)

We have, A=[1a1210a12]I=[0a1200a11]

Also, |A|=4  [0a1200a11]=4  2(a1)=4  a=3

Now, det((a + 1) adj((a – 1)A)) = |4 adj(2A)|

    =43|adj(2A)|=43|2A|31=43|2A|2=43(2)6|A|2

    =43×26×(4)2=45×26=(22)5×26=216=2m×3n

 m = 16 and n = 0

 m + n = 16 + 0 = 16.



Q 12 :    

Let A be a matrix of order 3×3 and |A| = 5. If |2 adj(3A adj(2A))|=2α·3β·5γ, α,β,γN, then α+β+γ is equal  to          [2025]

  • 28

     

  • 25

     

  • 27

     

  • 26

     

(3)

We have, |2 adj(3A adj((2A))|

=23·|3A adj(2A)|2          [ |adj A|=|A|n1, when n is order of matrix A]

=23·36·|A|2·(|2A|2)2

=23·36|A|2[(2)6·|A|2

=23·36·|A|2·212·|A|4=215·36·|A|6

=215·36·56=2α·3β·5γ          [ |A| = 5]

By comparing, we get

α=15, β=6, γ=6

  α+β+γ=27.



Q 13 :    

Let A be a 3×3 matrix such that |adj (adj (adj A))| = 81. If S={nZ : (|adj (adj A)(n1)22=|A|(3n25n4)}, then nS|A(n2+n)| is equal to          [2025]

  • 820

     

  • 750

     

  • 866

     

  • 732

     

(4)

We have, |adj (adj (adj A))| = 81

 |adj A|4=81  |adj A|=3

 |A|2=3  |A|=3

Now, (|A|4)(n1)22=|A|(3n25n4)

 2(n1)2=3n25n4

 2n24n+2=3n25n4

 n2n6=0 (n3)(n+2)=0

 n=3,2

So, nS|A(n2+n)|=|A2|+|A12|=3+729=732.



Q 14 :    

Let A=[22+p2+p+q46+2p8+3p+2q612+3p20+6p+3q]. If det (adj (adj (3A)) = ,2m·3n m, n  N, then m + n is equal to          [2025]

  • 20

     

  • 24

     

  • 26

     

  • 22

     

(2)

A=[22+p2+p+q46+2p8+3p+2q612+3p20+6p+3q]

R2R22R1 and R3R33R1

A=[22+p2+p+q024+p0614+3p]

  |A|=2(28+6p246p)=8=23

  |adj (adj (3A))|=|3A|(31)2

    =|3A|4=(33|A|)4=312(23)4=212312

  m=n=12  m+n=24.



Q 15 :    

For a 3×3matrix M, let trace (M) denote the sum of all the diagonal elements of M. Let A be a 3×3 matrix such that |A|=12 and trace (A) = 3. If B = adj (adj (2A)), then the value of |B| + trace (B) equals :          [2025]

  • 56

     

  • 280

     

  • 132

     

  • 174

     

(2)

Given, |A|=12, trace (A) = 3

= adj (adj (2A))           [ adj (adj A)=|A|n2A]

=|2A|32(2A)=23|A|(2A)=8A

 trace (B)=8 trace (A)=8×3=24

Hence, |B| + trace (B)

=83|A|+24=832+24=280.



Q 16 :    

If A, B and (adj(A1)+adj(B1)) are non-singular matrices of same order, then the inverse of A(adj(A1)+adj(B1))1B, is equal to          [2025]

  • AB1+A1B

     

  • AB1|A|+BA1|B|

     

  • adj(B1)+adj(A1)

     

  • 1|AB|(adj(B)+adj(A))

     

(4)

[A(adj(A1)+adj(B1)1B]1

=B1(adj(A1))+(adj(B1))A1

=B1(adj(A1))A1+B1(adj(B1))A1

=B1|A1|+|B1|A1

=B1|A|=A1|B|=adj(B)|B||A|+adj(A)|A||B|

=1|A||B|(adj(B)+adj(A))

=1|AB|(adj(B)+adj(A)).



Q 17 :    

Let A be a square matrix of order 3 such that det(A) = – 2 and det(3 adj(– 6 adj(3A)) = 2m+n·3mn, m > n. Then 4m + 2n is equal to __________.          [2025]



34

We have, |A| = – 2 and det(A) = – 2 and det(3 adj(– 6 adj(3A)) = 2m+n·3mn

 33det(adj(6adj(3A))=2m+n·3mn

 33|6adj(3A)|2=2m+n·3mn

 33((6)3)2|adj(3A)|=2m+n·3mn

 33(6)6|(3A)2|2=2m+n·3mn

 33×66×(33)4|A|4=2m+n·3mn

 321×26×(2)4  321×210=2m+n·3mn

On comparing the powers, we get m + n = 10 and mn = 21

   m = 7 and n = 3

   Value of 4m+2n=4×7×2×3=34.



Q 18 :    

Let A be a 3×3 matrix such that XTAX='O' for all nonzero 3×1 matrices X=[xyz]. If A[111]=[145], A[121]=[048], and det(adj(2(A+I)))=aα3β5γ, α, β, γ, then α2+β2+γ2 is __________.          [2025]



44

Given, XTAX=O

  [XYZ][a1a2a3b1b2b3c1c2c3][XYZ]=[000], where A =[a1a2a3b1b2b3c1c2c3] 

 X(a1X+a2Y+a3Z)+X(b1X+b2Y+b3Z)+Z(c1X+c2Y+c3Z)

On comparing cofficients, we get

 a1=0, b2=0, c3=0 and a2+b1=0, a3+c1=0, b1+c2=0

  A=[0a2a3a20b3a3b30]=[0xyx0zyz0] (Let)

  A=[0xyx0zyz0], which is skew-symetric matrix

Given, A[111]=[145]  A=[0xyx0zyz0][111]=[145]

x + y = 1, – x + z = 4, y + z = – 5

[0xyx0zyz0][121]=[048]

2x + y = 0, – x + z = 4, – y – 2z = – 8

 x=1, y=2, z=3

  A=[012103230]

  2(A+I)=[224226462]

  det(adj(2(A+I)))=|2(A+I)|2=(120)2

aα3β5γ=26×32×52

  α=6, β=2, γ=2

  α2+β2+γ2=36+4+4=44.