Q 1 :    

Consider the matrix f(x)=[cosx-sinx0sinxcosx0001].

Given below are two statements:

 

Statement I : f(-x) is the inverse of the matrix f(x).

 

Statement II : f(x)f(y)=f(x+y).

 

In the light of the above statements, choose the correct answer from the options given below                    [2024]

  • Statement I is true but Statement II is false

     

  • Both Statement I and Statement II are false

     

  • Statement I is false but Statement II is true

     

  • Both Statement I and Statement II are true

     

(D)

We have, f(x)=[cosx-sinx0sinxcosx0001]

                 f(-x)=[cosxsinx0-sinxcosx0001]

    f(x)f(-x)=[cosx-sinx0sinxcosx0001][cosxsinx0-sinxcosx0001]=[100010001]=If(-x)=[f(x)]-1

    Statement-I is true.

f(x)f(y)=[cosx-sinx0sinxcosx0001][cosy-siny0sinycosy0001]

=[cosxcosy-sinxsinycosx(-siny)-sinxcosy0sinxcosy+cosxsinysinx(-siny)+cosxcosy0001]

=[cos(x+y)-sin(x+y)0sin(x+y)cos(x+y)0001]=f(x+y)

      Statement-II is also true.



Q 2 :    

Let A be a square matrix such that AAT=I. Then 12A[(A+AT)2+(A-AT)2] is equal to                      [2024]

  • A2+AT

     

  • A2+I

     

  • A3+I

     

  • A3+AT

     

(D)

We have, 12A[(A+AT)2+(A-AT)2]

=12A[(A2+(AT)2)+2AAT+A2+(AT)2-2AAT]

=12A[2A2+2(AT)2]=12×2A[A2+(AT)2]

=A3+AAT·AT

=A3+I·AT                                        [Given, AAT=I]

=A3+AT  

 



Q 3 :    

Let A be a 3×3 real matrix such that A(101)=2(100), A(-101)=4(-101), A(010)=2(010).

 

Then, the system (A-3I) (xyz)=(123) has              [2024]

  • exactly two solutions

     

  • unique solution

     

  • infinitely many solutions

     

  • no solution

     

(B)

Let A=[x1y1z1x2y2z2x3y3z3]

Given, A[101]=[202][x1y1z1x2y2z2x3y3z3][101]=[202]x1+z1=2x2+z2=0x3+z3=2}                                        ...(i)

A[-101]=[-404][x1y1z1x2y2z2x3y3z3][-101]=[-404]-x1+z1=-4-x2+z2=0-x3+z3=4}                                     (ii)

and A[010]=[020]=[x1y1z1x2y2z2x3y3z3][010]=[020]

y1=0, y2=2, y3=0

Solving (i) and (ii), we get x1=3,x2=0,x3=-1,y1=0,y2=2,y3=0 and z1=-1,z2=0,z3=3

A=[30-1020-103]

Now, [00-10-10-100][xyz]=[123]

-z=3,-y=2and-x=1

x=-1,y=-2andz=-3

Hence, the given system has unique solution.

 



Q 4 :    

Let A=[2-111]. If the sum of the diagonal elements of A13 is 3n, then n is equal to ________ .               [2024]



(7)

We have, A=[2-111]

A2=[2-111][2-111]=[3-330]

A3=[3-330][2-111]=[3-66-3]

A4=[3-330][3-330]=[0-99-9]

A6=[3-330][0-99-9]=[-2700-27]

A6=-27I

A12=A6A6=(-27I)×(-27)I

A12=[72900729]=729I

So, A13=729I·A=36·A=36[2-111]=[36×236(-1)3636]

Sum of diagonal elements =36×2+36=36×3=37

n=7

 



Q 5 :    

Let A=I2-2MMT, where M is a real matrix of order 2×1 such that the relation MTM=I1 holds. If λ is a real number such that the relation AX=λX holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to _______ .            [2024]



(2)

Let  M=[ab]

Then MTM=I1[ab][ab]=[1]

a2+b2=1                                              ...(i)

Now, A=-2MMT=[1001]-2[a2ababb2]

A=[1-2a2-2ab-2ab1-2b2]

Also, Let X=[xy]

Then, AX=λX

[1-2a2-2ab-2ab1-2b2][xy]=[λxλy]

[(1-2a2)x-2aby-2abx+(1-2b2)y]=[λxλy]

On comparing, we get

(1-2a2)x-2aby=λx                                               ...(ii)

-2abx+(1-2b2)y=λy                                            ...(iii)

From (ii) & (iii), we get 

(1-2a2-λ)(1-2b2-λ)=4a2b2

1-2a2-λ-2b2+4a2b2+2b2λ-λ+2a2λ+λ2=4a2b2

λ2-2λ(1-a2-b2)+(1-2a2-2b2)=0

λ=2(1-a2-b2)±4(1-a2-b2)2-4(1-2a2-2b2)2

λ=2(1-a2-b2)±2(a2+b2)2

λ=1-a2-b2+a2+b2  or  λ=1-a2-b2-a2-b2

λ=1 or λ=1-2(a2+b2)=1-2=-1            ( from (i))

So, sum of squares of all possible values of λ=(1)2+(-1)2=2