Q 1 :    

Consider the matrix f(x)=[cosx-sinx0sinxcosx0001].

Given below are two statements:

Statement I : f(-x) is the inverse of the matrix f(x).

Statement II : f(x)f(y)=f(x+y).

In the light of the above statements, choose the correct answer from the options given below                    [2024]

  • Statement I is true but Statement II is false

     

  • Both Statement I and Statement II are false

     

  • Statement I is false but Statement II is true

     

  • Both Statement I and Statement II are true

     

(4)

We have, f(x)=[cosx-sinx0sinxcosx0001]

                 f(-x)=[cosxsinx0-sinxcosx0001]

    f(x)f(-x)=[cosx-sinx0sinxcosx0001][cosxsinx0-sinxcosx0001]=[100010001]=If(-x)=[f(x)]-1

    Statement-I is true.

f(x)f(y)=[cosx-sinx0sinxcosx0001][cosy-siny0sinycosy0001]

=[cosxcosy-sinxsinycosx(-siny)-sinxcosy0sinxcosy+cosxsinysinx(-siny)+cosxcosy0001]

=[cos(x+y)-sin(x+y)0sin(x+y)cos(x+y)0001]=f(x+y)

      Statement-II is also true.



Q 2 :    

Let A be a square matrix such that AAT=I. Then 12A[(A+AT)2+(A-AT)2] is equal to                      [2024]

  • A2+AT

     

  • A2+I

     

  • A3+I

     

  • A3+AT

     

(4)

We have, 12A[(A+AT)2+(A-AT)2]

=12A[(A2+(AT)2)+2AAT+A2+(AT)2-2AAT]

=12A[2A2+2(AT)2]=12×2A[A2+(AT)2]

=A3+AAT·AT

=A3+I·AT                                        [Given, AAT=I]

=A3+AT  

 



Q 3 :    

Let A be a 3×3 real matrix such that A(101)=2(100), A(-101)=4(-101), A(010)=2(010).

Then, the system (A-3I) (xyz)=(123) has              [2024]

  • exactly two solutions

     

  • unique solution

     

  • infinitely many solutions

     

  • no solution

     

(2)

Let A=[x1y1z1x2y2z2x3y3z3]

Given, A[101]=[202][x1y1z1x2y2z2x3y3z3][101]=[202]x1+z1=2x2+z2=0x3+z3=2}                                        ...(i)

A[-101]=[-404][x1y1z1x2y2z2x3y3z3][-101]=[-404]-x1+z1=-4-x2+z2=0-x3+z3=4}                                     (ii)

and A[010]=[020]=[x1y1z1x2y2z2x3y3z3][010]=[020]

y1=0, y2=2, y3=0

Solving (i) and (ii), we get x1=3,x2=0,x3=-1,y1=0,y2=2,y3=0 and z1=-1,z2=0,z3=3

A=[30-1020-103]

Now, [00-10-10-100][xyz]=[123]

-z=3,-y=2and-x=1

x=-1,y=-2andz=-3

Hence, the given system has unique solution.

 



Q 4 :    

Let A=[2-111]. If the sum of the diagonal elements of A13 is 3n, then n is equal to ________ .               [2024]



(7)

We have, A=[2-111]

A2=[2-111][2-111]=[3-330]

A3=[3-330][2-111]=[3-66-3]

A4=[3-330][3-330]=[0-99-9]

A6=[3-330][0-99-9]=[-2700-27]

A6=-27I

A12=A6A6=(-27I)×(-27)I

A12=[72900729]=729I

So, A13=729I·A=36·A=36[2-111]=[36×236(-1)3636]

Sum of diagonal elements =36×2+36=36×3=37

n=7



Q 5 :    

Let A=I2-2MMT, where M is a real matrix of order 2×1 such that the relation MTM=I1 holds. If λ is a real number such that the relation AX=λX holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to _______ .            [2024]



(2)

Let  M=[ab]

Then MTM=I1[ab][ab]=[1]

a2+b2=1                                              ...(i)

Now, A=-2MMT=[1001]-2[a2ababb2]

A=[1-2a2-2ab-2ab1-2b2]

Also, Let X=[xy]

Then, AX=λX

[1-2a2-2ab-2ab1-2b2][xy]=[λxλy]

[(1-2a2)x-2aby-2abx+(1-2b2)y]=[λxλy]

On comparing, we get

(1-2a2)x-2aby=λx                                               ...(ii)

-2abx+(1-2b2)y=λy                                            ...(iii)

From (ii) & (iii), we get 

(1-2a2-λ)(1-2b2-λ)=4a2b2

1-2a2-λ-2b2+4a2b2+2b2λ-λ+2a2λ+λ2=4a2b2

λ2-2λ(1-a2-b2)+(1-2a2-2b2)=0

λ=2(1-a2-b2)±4(1-a2-b2)2-4(1-2a2-2b2)2

λ=2(1-a2-b2)±2(a2+b2)2

λ=1-a2-b2+a2+b2  or  λ=1-a2-b2-a2-b2

λ=1 or λ=1-2(a2+b2)=1-2=-1            ( from (i))

So, sum of squares of all possible values of λ=(1)2+(-1)2=2



Q 6 :    

Let A be a 3×3 real matrix such that A2(A2I)4(AI)=O, where I and O are the identity and null matrices, respectively. If A5=αA2+βA+γI, where α, β and γ are real constants, then α+β+γ is equal to :          [2025]

  • 20

     

  • 76

     

  • 12

     

  • 4

     

(3)

We have, A2(A2I)4(AI)=O

 A32A24A+4I=O

 A3=2A2+4A4I          ... (i)

Now, A4=A·A3=A(2A2+4A4I)

      =2A3+4A24A=2(2A2+4A4I)+4A24A          [From (i)]

      =4A2+8A8I+4A24A=8A2+ 4A8I

Similarly, A5=A·A4=A(8A2+4A8I)

      =8A3+4A28A=8(2A2+4A4I)+4A28A          [From (i)]

      =20A2+24A32I

 α=20, β=24 and γ=32

   α+β+γ=20+2432=12.



Q 7 :    

Let the matrix A=[100101010] satisfy An=An2+A2I for n3. Then the sum of all the elements of A50 is:          [2025]

  • 44

     

  • 39

     

  • 52

     

  • 53

     

(4)

We have, A=[100101010]

 A2=[100101010][100101010]=[100110101]

Since, An=An2+A2I, n>3

 A50=A48+A2I

              =[A46+A2I]+(A2I)

              =A46+2(A2I)

              =A44+3(A2I)

              =A2+24(A2I)

              =25A224I

              =25[100110101]24[100010001]=[10025102501]

So, sum of elements of A50=53.



Q 8 :    

Let α be a solution of x2+x+1=0, and for some a and b in R, [4ab][116131122148][000]. If 4α4+mαa+nαb=3, then m + n is equal to __________           [2025]

  • 8

     

  • 3

     

  • 7

     

  • 11

     

(4)

Given, α is a solution of x2+x+1=0

 α2+α+1=0

 α=ω or ω2          (cube root of unity)

Now, [4ab][116131122148][000]

 [4a2b64a14b52+2a8b]=[000]

 a+2b=4; a+14b=64 and a4b=26

On solving above equations we get b = 5 and a = –6

Now, 4α4+mαa+nαb=3  4ω4+mω6+nω5=3

 4ω+m1+nω2=3          [  ω3=1]

 4ω2+m+nω=3

 4[13i2]+m+n[1+3i2]=3

 223i+mn2+n3i2=3

 2+mn2=3 and n3223=0          [Comparing real and imaginary part]

  m = 7, n = 4        m + n = 11.



Q 9 :    

Let A=[aij] be 3×3 matrix such that A[010]=[001], A[413]=[010] and A[212]=[100], then a23 equals:          [2025]

  • –1

     

  • 0

     

  • 2

     

  • 1

     

(1)

Let A=[a11a12a13a21a22a23a31a32a33]

A[010]=[001]  [a12a22a33]=[001]  a12=0;a22=0;a32=1

A[413]=[010]  4a11+a12+3a13=0          ... (i)4a21+a22+3a23  4a21+3a23=1... (ii)4a31+a32+3a33=0          ... (iii)

A[212]=[100]  2a11+a12+2a13=1         ... (iv)2a21+a22+2a23=0 a21+a23=0... (v)2a31+a32+2a33=0         ... (vi)

On solvig equations (ii) and (v), we get

a21=1 and a23=1.



Q 10 :    

Let A=[12201] and P=[cos θ sin θsin θcos θ],θ>0.. If B=PAPT,C=PTB10P and the sum of the diagonal elements of C is mn, where gcd (m, n) = 1, then m + n is :          [2025]

  • 127

     

  • 2049

     

  • 258

     

  • 65

     

(4)

We have, P=[cos θ sin θsin θcos θ]

PT=[cos θsin θsin θcos θ]

  PPT=[cos θsin θsin θcos θ][cos θsin θsin θcos θ]

=[1001]=I          ... (i)

Now, B=PAPT

Pre multiply by PT, we get

PTB=PTPAPT=APT          [using (i)]

Now, post multiply by PT, we get

PTBP=APTP=A

Now, A2=(PTBP)(PTBP)=PTB2P

Similarly, A10=PTB10P=C          [  C=PTB10P]

Now, A=[12201][12201]=[(12)22201]

Similarly, A3,A4,...,A10=C

So, sum of diagonal elements of C=(12)10+1

132+1=3332=mn

gcd(m,n)  gcd(33,32)=1

So, m + n = 33 + 32 = 65.