Q 41 :    

If the integral 5250π2sin2xcos112x(1+cos52x)12dx is equal to (n2-64), then n is equal to ______ .            [2024]



(176)

Let I=5250π2sin2x·cos112x(1+cos52x)12dx

Put cosx=t2

       -sin x dx=2 t dt

I=-525102sinx·t2·t11(1+t5)12·2tdtsinx

=525×401t3·t11(1+t5)12dt

I=210001t14(1+t5)dt

Let 1+t5=k25t4dt=2k dkt4dt=2kdk5

  I=210012(k2-1)2·k·2kdk5

         =2100×2512k2(k2-1)2dk

        =420×212(k6-2k4+k2)dk

        =840[k77-2k55+k33]12

         =840[827-825+223-(17-25+13)]

          =840[222-8105]=8[222-8]=1762-64 

So, n=176



Q 42 :    

|120π30πx2sinxcosxsin4x+cos4xdx| is equal to ________ .                 [2024]



(15)

 Let I=0πx2sinxcosxsin4x+cos4xdx

=0π/2sinxcosxsin4x+cos4x(x2-(π-x)2)dx

=0π/2sinxcosx(2πx-π2)sin4x+cos4xdx

=2π0π/2xsinxcosxsin4x+cos4xdx-π20π/2sinxcosxsin4x+cos4xdx

=2π·π40π/2sinxcosxsin4x+cos4x-π20π/2sinxcosxsin4x+cos4xdx

=-π220π/2sinxcosxsin4x+cos4x=-π220π/2sinxcosx1-2sin2x+cos2xdx

=-π220π/2sin2x1+cos22xdx

Put cos2x=t   I=-π221-1-dt2(1+t2)

=-π2201dt1+t2=-π22(tan-1t)01=-π22(π4)=-π38

  |120π30πx2sinxcosxsin4x+cos4x|=120π3×π38=15