Q 41 :    

If the integral 5250π2sin2xcos112x(1+cos52x)12dx is equal to (n2-64), then n is equal to ______ .            [2024]



(176)

Let I=5250π2sin2x·cos112x(1+cos52x)12dx

Put cosx=t2

       -sin x dx=2 t dt

I=-525102sinx·t2·t11(1+t5)12·2tdtsinx

=525×401t3·t11(1+t5)12dt

I=210001t14(1+t5)dt

Let 1+t5=k25t4dt=2k dkt4dt=2kdk5

  I=210012(k2-1)2·k·2kdk5

         =2100×2512k2(k2-1)2dk

        =420×212(k6-2k4+k2)dk

        =840[k77-2k55+k33]12

         =840[827-825+223-(17-25+13)]

          =840[222-8105]=8[222-8]=1762-64 

So, n=176



Q 42 :    

|120π30πx2sinxcosxsin4x+cos4xdx| is equal to ________ .                 [2024]



(15)

 Let I=0πx2sinxcosxsin4x+cos4xdx

=0π/2sinxcosxsin4x+cos4x(x2-(π-x)2)dx

=0π/2sinxcosx(2πx-π2)sin4x+cos4xdx

=2π0π/2xsinxcosxsin4x+cos4xdx-π20π/2sinxcosxsin4x+cos4xdx

=2π·π40π/2sinxcosxsin4x+cos4x-π20π/2sinxcosxsin4x+cos4xdx

=-π220π/2sinxcosxsin4x+cos4x=-π220π/2sinxcosx1-2sin2x+cos2xdx

=-π220π/2sin2x1+cos22xdx

Put cos2x=t   I=-π221-1-dt2(1+t2)

=-π2201dt1+t2=-π22(tan-1t)01=-π22(π4)=-π38

  |120π30πx2sinxcosxsin4x+cos4x|=120π3×π38=15



Q 43 :    

If (a,b) be the orthocentre of the triangle whose vertices are (1, 2), (2, 3) and (3, 1) and I1=abxsin(4x-x2)dx,  I2=absin(4x-x2)dx, then 36I1I2 is equal to :    [2024]

  • 66

     

  • 88

     

  • 72

     

  • 80

     

(3)

Let the vertices of the triangle are A(3,1), B(1,2) and C(2,3).

Slope of BC=3-22-1=1

Since, AD is perpendicular to BC.

Slope of AD = -1

Equation of line AD is

y-1=-1(x-3)

Since, (a,b) lies on AD.

 b-1=-1(a-3)a+b=4

Now, I1=abxsin[(4-x)x]dx

I1=ab(a+b-x)sin[(4-(a+b-x))(a+b-x)]dx

I1=4absin[(4-x)x]dx-abxsin[(4-x)x]dx

I1=4I2-I1                                 [absin[(4-x)x]dx=I2]

2I1=4I2I1I2=2           36I1I2=36×2=72

 



Q 44 :    

Let S=(-1,) and f:SR be defined as f(x)=-1x(et-1)11(2t-1)5(t-2)7(t-3)12(2t-10)61dt. Let p=Sum of squares of the values of x, where f(x) attains local maxima on S, and q= Sum of the values of x, where f(x) attains local minima on S. Then, the value of p2+2q is ____________ .    [2024]



(27)

Given, 

f(x)=-1x(et-1)11(2t-1)5(t-2)7(t-3)12(2t-10)61dt

f'(x)=(ex-1)11(2x-1)15(x-2)7(x-3)12(2x-10)61

So, x=0, x=12, x=2, x=3, x=5

 p=0+4=4

      q=12+5=112

 p2+2q=16+11=27