If the integral 525∫0π2sin2xcos112x(1+cos52x)12dx is equal to (n2-64), then n is equal to ______ . [2024]
(176)
Let I=525∫0π2sin2x·cos112x(1+cos52x)12dx
Put cosx=t2
-sin x dx=2 t dt
I=-525∫102sinx·t2·t11(1+t5)12·2t dtsinx
=525×4∫01t3·t11(1+t5)12 dt
I=2100∫01t14(1+t5) dt
Let 1+t5=k2⇒5t4 dt=2k dk⇒t4 dt=2k dk5
∴ I=2100∫12(k2-1)2·k·2k dk5
=2100×25∫12k2(k2-1)2 dk
=420×2∫12(k6-2k4+k2) dk
=840[k77-2k55+k33]12
=840[827-825+223-(17-25+13)]
=840[222-8105]=8[222-8]=1762-64
So, n=176
|120π3∫0πx2sinxcosxsin4x+cos4x dx| is equal to ________ . [2024]
(15)
Let I=∫0πx2sinxcosxsin4x+cos4x dx
=∫0π/2sinxcosxsin4x+cos4x(x2-(π-x)2) dx
=∫0π/2sinxcosx (2πx-π2)sin4x+cos4x dx
=2π∫0π/2xsinxcosxsin4x+cos4x dx-π2∫0π/2sinxcosxsin4x+cos4x dx
=2π·π4∫0π/2sinxcosxsin4x+cos4x -π2∫0π/2sinxcosxsin4x+cos4x dx
=-π22∫0π/2sinxcosxsin4x+cos4x =-π22∫0π/2sinxcosx1-2sin2x+cos2x dx
=-π22∫0π/2sin2x1+cos22x dx
Put cos2x=t ∴ I=-π22∫1-1-dt2(1+t2)
=-π22∫01dt1+t2=-π22(tan-1t)01=-π22(π4)=-π38
∴ |120π3∫0πx2sinxcosxsin4x+cos4x |=120π3×π38=15