Q 41 :    

Let the function, f(x)={3ax22,x<1a2+bx,x1 be differentiable for all xR, where a > 1, bR. If the area of the region enclosed by y = f(x) and the line y = –20 is α+β3, α, βZ then the value of α+β is __________.           [2025]



(34)

Given, f(x) is continuous and differentiable at x = 1.

f(x)={3ax22,x<1a2+bx,x1

 f'(x)={6ax,x<1b,x1

L.H.L. at x=1  3a2

R.H.L. at x=1  a2+b

   L.H.L. = R.H.L.          { f(x) is continuous}

 3a2=a2+b          ... (i)

L.H.D. at x=1  6a

R.H.D. at x=1  b

   L.H.D. = R.H.D.          [ f(x) is differentiable]

 6a=b          ... (ii)

From (i) and (ii), we get

3a2=a2-6a

 a23a+2=0  (a1)(a2)=0

 a=1 or a=2  a=2           ( a > 1)

From (ii), b = –12

Now, f(x)={6x22,x<1412x,x1

  Area of region =31(6x22+20)dx+12(412x+20)dx

=(6x332x+20x)31+(4x12x22+20x)12

 16+123+6=22+123

 22+123=α+β3

So, α=22 and β=12

  α+β=22+12=34



Q 42 :    

If the area of the larger portion bounded between the curves x2+y2=25 and y=|x1| is 14(bπ+c), b, cN, then b + c is equal to __________.          [2025]



(77)

Given, x2+y2=25

 x2+(x1)2=25          [ y = |x –1|]

 x=4,3

   Required area =25π(34(25x2|x1|)dx)

=25π[12x25x2+252sin1x5]34+31(1x)dx+14(x1)dx

=25π+252(2×3+252sin1(45)+32×4+252sin1(35))

=25π+2521225π4

=75π4+12=14(75π+2)

  14(bπ+c)=14(75π+2)

 b=75, c=2

 b+c=77.