Q 31 :    

Let [t] denote the largest integer less than or equal to t. If 03([x2]+[x22])dx=a+b2-3-5+c6-7, where a,b,cZ, then a+b+c is equal to _______.         [2024]



(23)

Given, 03([x2]+[x22])dx=a+b2-3-5+c6-7

Now, 03([x2]+[x22])dx=010dx+121dx+23(2+1)dx

+32(3+1)dx+256dx+567dx+679dx+7810dx+8312dx

=(2-1)+(33-32)+(8-43)+(65-12)+(76-75)+(97-96)+(108-107)+(36-128)

=31-62-3-5-26-7

a=31,b=-6,c=-2

So,  a+b+c=31-8=23



Q 32 :    

Let limn(nn4+1-2n(n2+1)n4+1+nn4+16-8n(n2+4)n4+16++nn4+n4-2n·n2(n2+n2)n4+n4) be πk, using only the principal values of the inverse trigonometric functions. Then k2 is equal to ______ .         [2024]



(32)

limn(nn4+1+nn4+16+nn4+n4)-limn(2n(n2+1)(n4+1)+8n(n2+4)n4+16+2n·n2(n2+n2)n4+n4)

=limnr=1n1n1+r4n4-limnr=1n1n2·(rn)2(1+(rn)2)11+r4n4

=01dx1+x4-201x2(1+x2)1+x4dx=011-x2(1+x2)1+x4dx

=01(1x2-1)dx(x+1x)x2+1x2=01(1x2-1)dx(x+1x)(x+1x)2-2

Put x+1x=t, then (1-1x2)dx=dt

=-2dttt2-2=2dttt2-2

Put t2-2=u22tdt=2ududt=utdu

=2du(u2+2)=12tan-1u2|2

=12(π2-π4)=π42=πk

k=25/2k2=25=32



Q 33 :    

Consider the matrices : A=[2-53m], B=[20m] and X=[xy]. Let the set of all m, for which the system of equations AX=B has a negative solution (i.e., x<0 and y<0), be the interval (a,b). Then 8ab|A|dm is equal to ______ .       [2024]



(450)

AX=B has a negative solution

So, x,y<0

Now, 2x-5y=20                                                 ...(i)

3x+my=m                                                          ...(ii)

On solving (i) and (ii), we get

y=2m-602m+15,  Since y<0

2m-602m+15<0 2m-60<0 and 2m+15>0

m<30 and m>-152

m(-152,30)

Also, x=25m2m+15<0

m(-152,0)

 m(-152,0)

Now, 8ab|A|dm=8-15/20(2m+15)dm

=8[m2+15m]-15/20=450



Q 34 :    

If -π/2π/282cosxdx(1+esinx)(1+sin4x)=απ+βloge(3+22), where α,β are integers, then α2+β2 equals ____ .         [2024]



(8)

Let I=-π/2π/282cosxdx(1+esinx)(1+sin4x)

Using -aaf(a+b-x)dx=-aaf(x)dx

2I=-π/2π/2(82cosx(1+esinx)(1+sin4x)+esinx82cosx(esinx+1)(1+sin4x))dx

=-π/2π/282cosx1+sin4xdx=20π/282cosx1+sin4xdx      [  -aaf(x)dx=0af(x)dx, if f(-x)=f(x)]

Put t=sinx  dt=cosx dx 

  I=8201dt1+t4=42012dt1+t4

=4201(1+1/t2t2+1/t2)dt-42011-1t2t2+1t2dt

=42011+1t2(t-1t)2+2dt-42122[ln(1+1t-2)t+1t+2]01

=42·12tan-1(t-1t2)01-4222[ln(t+1t-2)(t+1t+2)]01

=2π+2ln(3+22)=απ+βloge(3+22)

α=β=2

Then α2+β2=4+4=8



Q 35 :    

Let f:(0,)R and F(x)=0xtf(t)dt. If F(x2)=x4+x5, then r=112f(r2) is equal to ____.      [2024]



(219)

We have, F(x)=0xt·f(t)dt

F'(x)=x·f(x)                                                                 ...(i)

Also, we have F(x2)=x4+x5

Differentiating on both sides, we get

2x·F'(x2)=4x3+5x4

F'(x2)=2x2+52x3F'(x)=2x+52x3/2         ...(ii)

From (i) & (ii), we get xf(x)=2x+52x3/2

f(x)=2+52x1/2f(x2)=2+52x

 r=112f(r2)=r=112(2+52r)=24+52·12·132=219



Q 36 :    

Let f(x)=0xg(t)loge(1-t1+t)dt, where g is a continuous odd function. 

 

If -π/2π/2(f(x)+x2cosx1+ex)dx=(πα)2-α, then α is equal to _____.         [2024]



(2)

Given, f(x)=0xg(t)loge(1-t1+t)dt, where g is continuous odd function.

f'(x)=g(x)loge(1-x1+x)f'(-x)=g(-x)loge(1+x1-x)

           =-g(x)[-loge(1-x1+x)]=f(x)

     f'(x) is an even function.

 f(x) is an odd function.

Let I=-π/2π/2(f(x)+x2cosx1+ex)dx

=-π/2π/2f(x)dx+-π/2π/2x2cosx1+exdx

I=-π/2π/2x2cosx1+exdx          ...(i)          [-aaf(x)dx=0, as f(x) is an odd function]

I=-π/2π/2x2cosxex1+exdx                               ...(ii)

Adding (i) and (ii), we get

2I=-π/2π/2x2cosxdx=20π/2x2cosxdx ; I=0π/2x2cosxdx

I=(x2sinx)0π/2-0π/22xsinxdx

=π24-2(-xcosx)0π/2+0π/2cosxdx=π24-2(sinx)0π/2

=(π2)2-2(1-0)=(π2)2-2

  α=2 



Q 37 :    

Let the slope of the line 45x+5y+3=0 be 27r1+9r22 for some r1,r2R. Then limx3 (3x8t23r2x2-r2x2-r1x3-3xdt) is equal to ______ .     [2024]



(12)

Slope of line 45x+5y+3=0 is -455i.e,-9

Now, -9=27(-2)+9×102. So, r1=-2 and r2=10, we have limx33x8t215x-10x2+2x3-3xdt

=limx3115x-10x2+2x3-3x[8t33]3x

=limx3115x-10x2+2x3-3x[8x33-72]

=limx38x215-20x+6x2-3=7215-60+54-3=12



Q 38 :    

Ifπ/6π/31-sin2xdx=α+β2+γ3, where α,β, and γ are rational numbers, then 3α+4β-γ is equal to ¯____.       [2024]



(6)

Let I=π/6π/31-sin2xdx

=π/6π/3(sinx-cosx)2dxI=π/6π/3|sinx-cosx|dx

=π/6π/4(cosx-sinx)dx+π/4π/3(sinx-cosx)dx

=[sinx+cosx]π/6π/4+[-cosx-sinx]π/4π/3

=(12+12-12-32)+(-12-32+12+12)

=42-1-3=-1+22-3

So, α=-1,β=2,γ=-1

  3α+4β-γ=-3+8+1=6



Q 39 :    

The value of 909[10xx+1]dx, where [t] denotes the greatest integer less than or equal to t, is ______ .               [2024]



(155)

I=909[10xx+1]dx

Now, at x=0, [10xx+1]=0 at x=9, [10xx+1]=3

Integer values between 0 and 3 are 1 and 2

So  [10xx+1]=1 and [10xx+1]=2

10xx+1=1 and 10xx+1=4

10x=x+1 and 10x=4x+4

x=19 and x=23

I=901/9[10xx+1]dx+1/92/3[10xx+1]dx+2/39[10xx+1]dx

=9[01/90dx+1/92/31dx+2/392dx]        [ [t] is a greatest integer function]

=9[0+23-19+18-43]=9[-23-19+18]

=162-6-1=155



Q 40 :    

Let  f:RR be a function defined by f(x)=4x4x+2 and M=f(a)f(1-a)xsin4(x(1-x))dx, N=f(a)f(1-a)sin4(x(1-x))dx, a12. If αM=βN, α,βN, then the least value of α2+β2 is equal to ______ .             [2024]



(5)

We have, f(a)=4a4a+2

and f(1-a)=4(1-a)41-a+2=41·4-a41·4-a+2=41·4-a4-a(4+2·4a)=4(4+2·4a)=22+4a

f(a)+f(1-a)=4a4a+2+22+4a=4a+24a+2=1

M=f(a)f(1-a)xsin4[x(1-x)]dx,

N=f(a)f(1-a)sin4[x(1-x)]dx

M=f(a)f(1-a)(1-x)sin4[(1-x)(1-1+x)]dx

M=f(a)f(1-a)(1-x)sin4[x(1-x)]dx

f(a)f(1-a)sin4[x(1-x)]dx-f(a)f(1-a)xsin4[x(1-x)]dx

M=N-M2M=NMN=12

MN=βα=12β=1,α=2

Then, the least value of α2+β2=4+1=5